References
-
Ahmed, S. A., Gogal, R. M. Jr. & Walsh, J. E. 1994. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [
$^{3}H$ ]thymidine incorporation assay. J. Immunol. Methods 170:211-224. https://doi.org/10.1016/0022-1759(94)90396-4 - Baba, M., Schols, D., Pauwels, R., Nakashima, H. & De Clercq, E. 1990. Sulfated polysaccharides as potent inhibitors of HIV-induced syncytium formation: a new strategy towards AIDS chemotherapy. J. Acquir. Immune Defic. Syndr. 3:493-499.
- Chotigeat, W., Tongsupa, S., Supamataya, K. & Phongdara, A. 2004. Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture 233:23-30. https://doi.org/10.1016/j.aquaculture.2003.09.025
- Clement, M. J., Tissot, B., Chevolot, L., Adjadj, E., Du, Y., Curmi, P. A. & Daniel, R. 2010. NMR characterization and molecular modeling of fucoidan showing the importance of oligosaccharide branching in its anticomplementary activity. Glycobiology 20:883-894. https://doi.org/10.1093/glycob/cwq046
- Collins, L. & Franzblau, S. G. 1997. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 41:1004-1009.
- Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Camara, R. B., Nobre, L. T., Costa, M. S., Almeida- Lima, J., Farias, E. H., Leite, E. L. & Rocha, H. A. 2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharmacother. 64:21-28. https://doi.org/10.1016/j.biopha.2009.03.005
- Croci, D. O., Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., Piccoli, A., Totani, L., Ustyuzhanina, N. E., Bilan, M. I., Usov, A. I., Grachev, A. A., Morozevich, G. E., Berman, A. E., Sanderson, C. J., Kelly, M., Di Gregorio, P., Rossi, C., Tinari, N., Iacobelli, S., Rabinovich, G. A., Nifantiev, N. E. & Consorzio Interuniversitario Nazionale per la Bio-Oncologia (CINBO), Italy. 2011. Fucans, but not fucomannoglucuronans, determine the biological activities of sulfated polysaccharides from Laminaria saccharina brown seaweed. PLoS One 6:e17283. https://doi.org/10.1371/journal.pone.0017283
- Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. I., Usov, A. I., Ustyuzhanina, N. E., Grachev, A. A., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., Nifantiev, N. E. & Consorzio Interuniversitario Nazionale per la Bio-Oncologia (CINBO), Italy. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541-552.
- Damonte, E. B., Matulewicz, M. C. & Cerezo, A. S. 2004. Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem. 11:2399-2419. https://doi.org/10.2174/0929867043364504
- De Souza, M. C. R., Marques, C. T., Dore, C. M. G., Da Silva, F. R. F., Rocha, H. A. O. & Leite, E. L. 2007. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 19:153-160. https://doi.org/10.1007/s10811-006-9121-z
- Ellouali, M., Boisson-Vidal, C., Durand, P. & Jozefonvicz, J. 1993. Antitumor activity of low molecular weight fucans extracted from brown seaweed Ascophyllum nodosum. HeliAnticancer Res. 13:2011-2019.
- Heinzelmann, M., Polk, H. C. Jr. & Miller, F. N. 1998. Modulation of lipopolysaccharide-induced monocyte activation by heparin-binding protein and fucoidan. Infect. Immun. 66:5842-5847.
- Jiang, Z., Okimura, T., Yamaguchi, K. & Oda, T. 2011. The potent activity of sulfated polysaccharide, ascophyllan, isolated from Ascophyllum nodosum to induce nitric oxide and cytokine production from mouse macrophage RAW264.7 cells: comparison between ascophyllan and fucoidan. Nitric Oxide 25:407-415. https://doi.org/10.1016/j.niox.2011.10.001
- Jiang, Z., Okimura, T., Yokose, T., Yamasaki, Y., Yamaguchi, K. & Oda, T. 2010. Effects of sulfated fucan, ascophyllan, from the brown alga Ascophyllum nodosum on various cell lines: a comparative study on ascophyllan and fucoidan. J. Biosci. Bioeng. 110:113-117. https://doi.org/10.1016/j.jbiosc.2010.01.007
- Jin, J. -O., Song, M. -G., Kim, Y. -N., Park, J. -I. & Kwak, J. -Y. 2010. The mechanism of fucoidan-induced apoptosis in leukemic cells: involvement of ERK1/2, JNK, glutathione, and nitric oxide. Mol. Carcinog. 49:771-782.
- Kang, S. -M., Kim, K. -N., Lee, S. -H., Ahn, G., Cha, S. -H., Kim, A. -D., Yang, X. -D., Kang, M. -C. & Jeon, Y. -J. 2011. Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages. Carbohydr. Polym. 85:80-85. https://doi.org/10.1016/j.carbpol.2011.01.052
- Karmakar, P., Pujol, C. A., Damonte, E. B., Ghosh, T. & Ray, B. 2010. Polysaccharides from Padina tetrastromatica: structural features, chemical modification and antiviral activity. Carbohydr. Polym. 80:513-520. https://doi.org/10.1016/j.carbpol.2009.12.014
- Kim, E. J., Park, S. Y., Lee, J. -Y. & Park, J. H. 2010. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 10:96. https://doi.org/10.1186/1471-230X-10-96
- Kloareg, B., Demarty, M. & Mabeau, S. 1986. Polyanionic characteristics of purified sulphated homofucans from brown algae. Int. J. Biol. Macromol. 8:380-386. https://doi.org/10.1016/0141-8130(86)90060-7
- Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S. & Shimeno, H. 2003. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 65:173-179. https://doi.org/10.1016/S0006-2952(02)01478-8
- Kusaykin, M., Bakunina, I., Sova, V., Ermakova, S., Kuznetsova, T., Besednova, N., Zaporozhets, T. & Zvyagintseva, T. 2008. Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol. J. 3:904-915. https://doi.org/10.1002/biot.200700054
- Leiro, J. M., Castro, R., Arranz, J. A. & Lamas, J. 2007. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int. Immunopharmacol. 7:879-888. https://doi.org/10.1016/j.intimp.2007.02.007
- Li, L. -Y., Li, L. -Q. & Guo, C. -H. 2010. Evaluation of in vitro antioxidant and antibacterial activities of Laminaria japonica polysaccharides. J. Med. Plants Res. 4:2194-2198.
- Lins, K. O., Bezerra, D. P., Alves, A. P., Alencar, N. M., Lima, M. W., Torres, V. M., Farias, W. R., Pessoa, C., De Moraes, M. O. & Costa- Lotufo, L. V. 2009. Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). J. Appl. Toxicol. 29:20-26. https://doi.org/10.1002/jat.1374
- Lustigman, B. & Brown, C. 1991. Antibiotic production by marine algae isolated from the New York/New Jersey coast. Bull. Environ. Contam. Toxicol. 46:329-335. https://doi.org/10.1007/BF01688928
- Medcalf, D. G. & Larsen, B. 1977. Fucose-containing polysaccharides in the brown algae Ascophyllum nodosum and Fucus vesiculosus. Carbohydr. Res. 59:531-537. https://doi.org/10.1016/S0008-6215(00)83190-0
- Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I. & Nakamura, T. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother. 50:889-893. https://doi.org/10.1093/jac/dkf222
- Nakayasu, S., Soegima, R., Yamaguchi, K. & Oda, T. 2009. Biological activities of fucose-containing polysaccharide ascophyllan isolated from the brown alga Ascophyllum nodosum. Biosci. Biotechnol. Biochem. 73:961-964. https://doi.org/10.1271/bbb.80845
- Nishino, T., Nishioka, C., Ura, H. & Nagumo, T. 1994. Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res. 255:213-224. https://doi.org/10.1016/S0008-6215(00)90980-7
- Niwano, Y., Sato, E., Kohno, M., Matsuyama, Y., Kim, D. & Oda, T. 2007. Antioxidant properties of aqueous extracts from red tide plankton cultures. Biosci. Biotechnol. Biochem. 71:1145-1153. https://doi.org/10.1271/bbb.60593
- Noda, H., Amano, H., Arashima, K. & Nisizawa, K. 1990. Antitumor activity of marine algae. Hydrobiologia 204/205:577-584. https://doi.org/10.1007/BF00040290
- Pereira, M. S., Mulloy, B. & Mourao, P. A. 1999. Structure and anticoagulant activity of sulfated fucans: comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J. Biol. Chem. 274:7656- 7667. https://doi.org/10.1074/jbc.274.12.7656
- Pierre, G., Sopena, V., Juin, C., Mastouri, A., Graber, M. & Maugard, T. 2011. Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol. Bioprocess. Eng. 16:937-945. https://doi.org/10.1007/s12257-011-0224-2
- Raghavendran, H. R., Srinivasan, P. & Rekha, S. 2011. Immunomodulatory activity of fucoidan against aspirin-induced gastric mucosal damage in rats. Int. Immunopharmacol. 11:157-163. https://doi.org/10.1016/j.intimp.2010.11.002
- Shibata, H., Kimura-Takagi, I., Nagaoka, M., Hashimoto, S., Sawada, H., Ueyama, S. & Yokokura, T. 1999. Inhibitory effect of Cladosiphon fucoidan on the adhesion of Helicobacter pylori to human gastric cells. J. Nutr. Sci. Vitaminol. (Tokyo) 45:325-336. https://doi.org/10.3177/jnsv.45.325
- Sinha, S., Astani, A., Ghosh, T., Schnitzler, P. & Ray, B. 2010. Polysaccharides from Sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry 71:235-242. https://doi.org/10.1016/j.phytochem.2009.10.014
- Tissot, B. & Daniel, R. 2003. Biological properties of sulfated fucans: the potent inhibiting activity of algal fucoidan against the human compliment system. Glycobiology 13:29G-30G. https://doi.org/10.1093/glycob/cwg126
- Wang, H., Chiu, L. C. M., Ooi, V. E. C. & Ang, P. O. Jr. 2010. A potent antitumor polysaccharide from the edible brown seaweed Hydroclathrus clathratus. Bot. Mar. 53:265-274.
- Witvrouw, M. & De Clercq, E. 1997. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen. Pharmacol. Vasc. Syst. 29:497-511. https://doi.org/10.1016/S0306-3623(96)00563-0
- Yoon, J. -S., Yadunandam, A. K., Kim, S. -J., Woo, H. -C., Kim, H. -R. & Kim, G. -D. 2013. Dieckol, isolated from Ecklonia stolonifera, induces apoptosis in human hepatocellular carcinoma Hep3B cells. J. Nat. Med. 67:519-527. https://doi.org/10.1007/s11418-012-0709-0
Cited by
- Effect of seaweed on gastrointestinal microbiota isolated from Norwegian White sheep vol.66, pp.3, 2016, https://doi.org/10.1080/09064702.2017.1310287
- FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.12.1
- Potential Antibacterial Activity of Marine Macroalgae against Pathogens Relevant for Aquaculture and Human Health vol.11, pp.4, 2014, https://doi.org/10.22207/jpam.11.4.07
- Extraction Improvement of the Bioactive Blue-Green Pigment “Marennine” from Diatom Haslea ostrearia ’s Blue Water: A Solid-Phase Method Based on Graphitic Matrices vol.18, pp.12, 2020, https://doi.org/10.3390/md18120653