DOI QR코드

DOI QR Code

Nitrogen allocation of Gracilaria tikvahiae grown in urbanized estuaries of Long Island Sound and New York City, USA: a preliminary evaluation of ocean farmed Gracilaria for alternative fish feeds

  • Johnson, Ronald B. (Resource Enhancement and Utilization Technologies Division, Northwest Fisheries Science Center, National Marine Fisheries Service) ;
  • Kim, Jang K. (Department of Marine Sciences, University of Connecticut) ;
  • Armbruster, Lisa C. (Resource Enhancement and Utilization Technologies Division, Northwest Fisheries Science Center, National Marine Fisheries Service) ;
  • Yarish, Charles (Department of Ecology and Evolutionary Biology, University of Connecticut)
  • Received : 2014.05.01
  • Accepted : 2014.08.21
  • Published : 2014.09.15

Abstract

The red seaweed, Gracilaria tikvahiae McLachlan, was cultivated in open water farms in urbanized estuaries of Long Island Sound (26-30 psu of salinity) and New York City (20-25 psu), USA in 2011. Plants were harvested monthly from summer (August, $24^{\circ}C$) to fall (November, $13^{\circ}C$) and analyzed for total nitrogen, protein, and amino acid content. On a dry matter (DM) basis, nitrogen and protein significantly increased over the harvest period until October and then plateaued. Nitrogen increased from $22{\pm}1g\;kg^{-1}$ DM in August to $39{\pm}3g\;kg^{-1}$ DM in October (p < 0.001). Protein increased from $107{\pm}13g\;kg^{-1}$ DM in August to $196{\pm}5g\;kg^{-1}$ DM in November (p < 0.001). With two exceptions, amino acid concentrations expressed on a crude protein (CP) basis were similar over the harvest period. Essential amino acids accounted for $48{\pm}1%$ of all amino acids present with lysine and methionine averaging $56{\pm}2g\;kg^{-1}$ CP and $18{\pm}1g\;kg^{-1}$ CP, respectively. Histidine was underrepresented among essential amino acids and averaged $13{\pm}1g\;kg^{-1}$ CP. Taurine ranged from 2.1 to $3.2g\;kg^{-1}$ DM. With its moderate levels of lysine, methionine and taurine, ocean farmed G. tikvahiae has the potential of overcoming many nutrient deficiencies currently associated with terrestrial plant ingredients in alternative feeds for fish and shrimp.

Keywords

References

  1. Abreu, M. H., Pereira, R., Buschmann, A. H., Sousa-Pinto, I. & Yarish, C. 2011a. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J. Exp. Mar. Biol. Ecol. 407:190-199. https://doi.org/10.1016/j.jembe.2011.06.034
  2. Abreu, M. H., Pereira, R., Sousa-Pinto, I. & Yarish, C. 2011b. Ecophysiological studies of the non-indigenous species Gracilaria vermiculophylla (Rhodophyta) and its abundance patterns in Ria de Aveiro Lagoon, Portugal. Eur. J. Phycol. 46:453-464. https://doi.org/10.1080/09670262.2011.633174
  3. Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H. & Sousa-Pinto, I. 2011c. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77-87. https://doi.org/10.1016/j.aquaculture.2010.12.036
  4. Abreu, M. H., Varela, D. A., Henriquez, L., Villarroel, A., Yarish, C., Sousa-Pinto, I. & Buschmann, A. H. 2009. Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: productivity and physiological performance. Aquaculture 293:211-220. https://doi.org/10.1016/j.aquaculture.2009.03.043
  5. Almela, C., Algora, S., Benito, V., Clemente, M. J., Devesa, V., Suner M. A., Velez, D. & Montoro, R. 2002. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J. Agric. Food Chem. 50:918-923. https://doi.org/10.1021/jf0110250
  6. AOAC International. 2000. Official methods 984.13 and 982.30. In Horwitz, W. (Ed.) Official Methods of Analysis of AOAC International. AOAC International, Arlington, VA.
  7. Besada, V., Andrade, J. M., Schultze, F. & Gonzalez, J. J. 2009. Heavy metals in edible seaweeds commercialised for human consumption. J. Mar. Syst. 75:305-313. https://doi.org/10.1016/j.jmarsys.2008.10.010
  8. Bird, C. J., Edelstein, T. & McLachlan, J. 1977. Studies on Gracilaria. Experimental observations on growth and reproduction in Pomquet Harbour, Nova Scotia. Nat. can. 104:245-255.
  9. Bird, C. J. & McLachlan, J. 1986. The effect of salinity on distribution of species Gracilaria Grev. (Rhodophyta, Gigartinales): an experimental assessment. Bot. Mar. 29:231-238.
  10. Bird, N. L., Chen, L. C. -M. & McLachlan, J. 1979. Effects of temperature, light, and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta), and Fucus serratus (Fucales, Phaeophyta). Bot. Mar. 22:521-527.
  11. Burkholder, P. R., Burkholder, L. M. & Almodovar, L. R. 1971. Nutritive constiuents of some Caribbean marine algae. Bot. Mar. 14:132-135.
  12. Cheney, D., Brudner, M., Aulisio, D. & Gardner, K. 2007. Seaweed removal and remediation of organic pollutants from marine sediments. Eur. J. Phycol. 44:80-81.
  13. Choi, H. G., Kim, Y. S., Kim, J. H., Lee, S. J., Park, E. J., Ryu, J. & Nam, K. W. 2006. Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea. J. Appl. Phycol. 18:269-277. https://doi.org/10.1007/s10811-006-9033-y
  14. Corey, P., Kim, J. K., Duston, J. & Garbary, D. J. 2014. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae 29:35-45. https://doi.org/10.4490/algae.2014.29.1.035
  15. Cruz-Uribe, O., Cheney, D. P. & Rorrer, G. L. 2007. Comparison of TNT removal from seawater by three marine macroalgae. Chemosphere 67:1469-1476. https://doi.org/10.1016/j.chemosphere.2007.01.001
  16. Dawczynski, C., Schubert, R. & Jahreis, G. 2007. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 103:891-899. https://doi.org/10.1016/j.foodchem.2006.09.041
  17. Ergun, S., Soyuturk, M., Guroy, B., Guroy, D. & Merrifield, D. 2009. Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquac. Int. 17:355-361. https://doi.org/10.1007/s10499-008-9207-5
  18. Fleurence, J., Morancais, M., Dumay, J., Decottignies, P., Turpin, V., Munier, M., Garcia-Bueno, N. & Jaouen, P. 2012. What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci. Technol. 27:57-61. https://doi.org/10.1016/j.tifs.2012.03.004
  19. Food and Agriculture Organization of the United Nations. 2014. The state of the world fisheries and aquaculture. FAO Fisheries and Aquaculture Department, Rome, 202 pp.
  20. Gaylord, T. G., Teague, A. M. & Barrows, F. T. 2006. Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchus mykiss). J. World Aquac. Soc. 37:509-517. https://doi.org/10.1111/j.1749-7345.2006.00064.x
  21. Giusti, L. 2001. Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear river and the Tees river. Environ. Int. 26:275-286. https://doi.org/10.1016/S0160-4120(00)00117-3
  22. Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Filho, J. M., Torres, R. P. & Pinto, E. 2010. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 120:585-590. https://doi.org/10.1016/j.foodchem.2009.10.028
  23. Guiry, M. D. & Guiry, G. M. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed May 1, 2014.
  24. Hanisak, M. D. 1990. The use of Gracilaria tikvahiae (Gracilariales, Rhodophyta) as a model system to understand the nitrogen nutrition of culture seaweeds. Hydrobiologia 204/205:79-87. https://doi.org/10.1007/BF00040218
  25. Hansen, H. P. & Koroleff, F. 1999. Determination of nutrients. In Grasshoff, K., Cremling, K. & Erhardt, M. (Eds.) Methods of Seawater Analysis. Wiley-VCH Verlag, Weinheim, pp. 159-228.
  26. Hardy, R. W., Higgs, D., Lall, S. & Tacon, A. G. J. 2001. Alternative dietary protein and lipid sources for the sustainable production of salmonids. Havforskningsinstituttet (Institute of Marine Research), Bergen, 55 pp.
  27. Huxtable, R. J. 1992. Physiological actions of taurine. Physiol. Rev. 72:101-163. https://doi.org/10.1152/physrev.1992.72.1.101
  28. Kanjana, K., Radtanatip, T., Asuvapongpatana, S., Withyachumnarnkul, B. & Wongprasert, K. 2011. Solvent extracts of the red seaweed Gracilaria fisheri prevent Vibrio harveyi infections in the black tiger shrimp Penaeus monodon. Fish Shellfish Immunol. 30:389-396. https://doi.org/10.1016/j.fsi.2010.11.016
  29. Khan, M. N. D., Yoshimatsu, T., Kalla, A., Araki, T. & Sakamoto, S. 2008. Supplemental effect of Porphyra spheroplasts on the growth and feed utilization of black sea bream. Fish. Sci. 74:397-404. https://doi.org/10.1111/j.1444-2906.2008.01536.x
  30. Kim, J. K., Duston, J., Corey, P. & Garbary, D. J. 2013. Marine finfish effluent bioremediation: effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta). Aquaculture 414-415:210-216. https://doi.org/10.1016/j.aquaculture.2013.08.008
  31. Kim, J. K., Kraemer, G. P. & Yarish, C. 2014. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433:148-156. https://doi.org/10.1016/j.aquaculture.2014.05.034
  32. Kim, S. -K., Takeuchi, T., Yokoyama, M., Murata, Y., Kaneniwa, M. & Sakakura, Y. 2005. Effect of dietary taurine levels on growth and feeding behavior of juvenile Japanese flounder Paralichthys olivaceus. Aquaculture 250:765-774. https://doi.org/10.1016/j.aquaculture.2005.04.073
  33. Kim, S. Y., Weinberger, F. & Boo, S. M. 2010. Genetic data hint at a common donor region for invasive Atlantic and Pacific populations of Gracilaria vermiculophylla (Gracilariales, Rhodophyta). J. Phycol. 46:1346-1349. https://doi.org/10.1111/j.1529-8817.2010.00905.x
  34. Latimer, J. S., Tedesco, M. A., Swanson, R. L., Yarish, C., Stacey, P. E. & Garza, C. 2014. Long Island sound: prospects for the urban sea. Springer, New York, 558 pp.
  35. Lorenzana, R. M., Yeow, A. Y., Colman, J. T., Chappell, L. L. & Choudhury, H. 2009. Arsenic in seafood: speciation issues for human health assessment. Hum. Ecol. Risk Assess. 15:185-200. https://doi.org/10.1080/10807030802615949
  36. Lotufo, G. R., Lydy, M. J., Rorrer, G., Cruz-Uribe, O. & Cheney, D. P. 2008. Bioconcentration, bioaccumulation, and biotransformation of explosives and related compounds in aquatic organisms. In Sunahara, G. I., Lotufo, G., Kuperman, R. G. & Hawari, J. (Eds.) Ecotoxicology of Explosives. CRC Press, Boca Raton, FL, pp. 135-155.
  37. Lourenco, S. O., Barbarino, E., De-Paula, J. C., Pereira, L. O. D. S. & Marquez, U. M. L. 2002. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res. 50:233-241. https://doi.org/10.1111/j.1440-1835.2002.tb00156.x
  38. Lunger, A. N., McLean, E., Gaylord, T. G., Kuhn, D. & Craig, S. R. 2007. Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture 271:401-410. https://doi.org/10.1016/j.aquaculture.2007.07.006
  39. Luning, K. 1990. Seaweeds-their environment, biogeography, and ecophysiology. In Yarish, C. & Kirkman, H. (Eds.) Edited Translation of the German language edition Meeresbotanik: Verbreitung, Okophysiologie und Nutzung der marinen Makroalgen by Klaus Luning. John Wiley and Sons, Inc., New York, pp. 1-527.
  40. MacArtain, P., Gill, C. I. R., Brooks, M., Campbell, R. & Rowland, I. R. 2007. Nutritional value of edible seaweeds. Nutr. Rev. 65:535-543. https://doi.org/10.1111/j.1753-4887.2007.tb00278.x
  41. Matsunari, H., Furuita, H., Yamamoto, T., Kim, S. -K., Sakakura, Y. & Takeuchi, T. 2008. Effect of dietary taurine and cystine on growth performance of juvenile red sea bream Pagrus major. Aquaculture 274:142-147. https://doi.org/10.1016/j.aquaculture.2007.11.002
  42. McLachlan, J. & Bird, C. J. 1984. Geographical and experimental assessment of the distribution of Gracilaria species (Rhodophyta: Gigartinales) in relation to temperature. Helgol. Meeresunters. 38:319-334. https://doi.org/10.1007/BF02027684
  43. Mustafa, G., Wakamatsu, S., Takeda, T., Umino, T. & Nakagawa, H. 1995. Effects of algae meal as feed additive on growth, feed efficiency, and body composition in red sea bream. Fish. Sci. 61:25-28. https://doi.org/10.2331/fishsci.61.25
  44. Mustafa, M. G. & Nakagawa, H. 1995. A review: dietary benefits of algae as an additive in fish feed. Isr. J. Aquac.-Bamidgeh 47:155-162.
  45. National Research Council. 2001. Nutrient requirements of dairy cattle. 7th ed. National Academies Press, Washington, DC, 381 pp.
  46. National Research Council. 2011. Nutrient requirements of fish and shrimp. National Academies Press, Washington, DC, 376 pp.
  47. Nettleton, J. C., Mathieson, A. C., Thornber, C., Neefus, C. D. & Yarish, C. 2013. Introduction of Gracilaria vermiculophylla (Rhodophyta, Gracilariales) to New England, USA: estimated arrival times and current distribution. Rhodora 115:28-41. https://doi.org/10.3119/12-07
  48. Notoya, M. 2010. Production of biofuel by macroalgae with preservation of marine resources and environment. In Isreal, A., Einav, R. & Seckbach, J. (Eds.) Seaweeds and Their Role in Globally Changing Environments. Springer, Dordrecht, pp. 217-228.
  49. Pedersen, A., Kraemer, G., Hariskov, S. & Yarish, C. 2012. Porphyra spp. from Long Island sound: free amino acids, Tot. C, Tot. N and phycobiliproteins content and the response to short term uptake of nitrate. In Sahoo, D. & Kaushik, D. B. (Eds.) Algal Biotechnology and Environment. I.K. International Publishing House, New Delhi, pp. 129-144.
  50. Penniman, C. A. & Mathieson, A. C. 1987. Variation in chemical composition of Gracilaria tikvahiae McLachlan (Gigartinales, Rhodophyta) in the Great Bay Estuary, New Hampshire. Bot. Mar. 30:525-534.
  51. Penniman, C. A., Mathieson, A. C. & Penniman, C. E. 1986. Reproductive phenology and growth of Gracilaria tikvahiae McLachlan (Gigartinales, Rhodophyta) in the Great Bay Estuary, New Hampshire. Bot. Mar. 29:147-154.
  52. Saunders, G. W. 2009. Routine DNA barcoading of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia. Mol. Ecol. Resour. 9(Suppl. 1):140-150.
  53. Stadtlander, T., Khalil, W. K. B., Focken, U. & Becker, K. 2013. Effects of low and medium levels of red alga Nori (Porphyra yezoensis Ueda) in the diets on growth, feed utilization and metabolism in intensively fed Nile tilapia, Oreochromis niloticus (L.). Aquac. Nutr. 19:64-73. https://doi.org/10.1111/j.1365-2095.2012.00940.x
  54. Teichberg, M., Fox, S. E., Aguila, C., Olsen, Y. S. & Valiela, I. 2008. Macroalgal responses to experimental nutrient enrichment in shallow coastal waters: growth, internal nutrient pools, and isotopic signatures. Mar. Ecol. Prog. Ser. 368:117-126. https://doi.org/10.3354/meps07564
  55. Thomsen, M. S. & McGlathery, K. J. 2007. Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft- bottom turbid lagoon. Biol. Invasions 9:499-513. https://doi.org/10.1007/s10530-006-9043-3
  56. Valente, L. M. P., Gouveia, A., Rema, P., Matos, J., Gomes, E. F. & Pinto, I. S. 2006. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida, and Gacilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 252:85-91. https://doi.org/10.1016/j.aquaculture.2005.11.052
  57. Walker, A. B., Fournier, H. R., Neefus, C. D., Nardi, G. C. & Berlinsky, D. L. 2009. Partial replacement of fish meal with laver Porphyra spp. in diets for Atlantic cod. N. Am. J. Aquac. 71:39-45. https://doi.org/10.1577/A07-110.1
  58. White, K. L., Kim, J. K. & Garbary, D. J. 2011. Effects of landbased fish farm effluent on the morphology and growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in southwestern Nova Scotia. Algae 26:253-263. https://doi.org/10.4490/algae.2011.26.3.253
  59. Woyewoda, A. D., Shaw, S. J., Ke, P. J. & Burns. B. G. 1986. Recommended laboratory methods for assessment of fish quality. Canadian technical report of fisheries and aquatic sciences. No. 1448. Department of Fisheries and Oceans, Halifax, NS, 143 pp.
  60. Yang, M. Y., Dong, J. -D. & Kim, M. S. 2012. Taxonomic notes on five species of Gracilariaceae from Hainan, China. Algae 27:175-187. https://doi.org/10.4490/algae.2012.27.3.175
  61. Yang, Y. & Yarish, C. 2011. Gracilaria cultivation can provide bioremediation in Chinese mariculture mussel culture. Glob. Aquac. Advocate 14:50-51.
  62. Yarish, C., Kilar, J. A. & Merrill, J. E. 1991. The management of eutrophication through aquaculture and natural beds of marine algae. In Hinga, K. R., Stanley, D. W., Klein, C. J., Lucid, D. T. & Katz, M. J. (Eds.) The National Estuarine Eutrophication Project: Workshop Proceedings. National Oceanic and Atmospheric Administration and the University of Rhode Island Graduate School of Oceanography, Rockville, MD, pp. 40-41.
  63. Yarish, C. & Kim, J. K. 2013. Exploring integrated multi-trophic aquaculture (IMTA) linkage through nutrient bioextraction: the use of ecological methods to integrate the cultivation of seaweeds to remediate nitrified coastal waters. In Vitro Cell. Dev. Biol. Anim. 49(Suppl. 1):2-3. https://doi.org/10.1007/s11626-013-9615-3
  64. Yarish, C. & Pereira, R. 2008. Mass production of marine macroalgae. In Jorgensen, S. E. & Fath, B. D. (Eds.) Ecological Engineering. Elsevier, Oxford, pp. 2236-2247.
  65. Yokoi, K. & Konomi, A. 2012. Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regul. Toxicol. Pharmacol. 63:291-297. https://doi.org/10.1016/j.yrtph.2012.04.006
  66. Yokoya, N. S., Kakita, H., Obika, H. & Kitamura, T. 1999. Effects of environmental factors and plant growth regulators on growth of the red algae Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia 398/398:339-347.

Cited by

  1. Algae as nutritional and functional food sources: revisiting our understanding vol.29, pp.2, 2017, https://doi.org/10.1007/s10811-016-0974-5
  2. Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system vol.446, 2015, https://doi.org/10.1016/j.aquaculture.2015.05.008
  3. Use of sugar kelp aquaculture in Long Island Sound and the Bronx River Estuary for nutrient extraction vol.531, 2015, https://doi.org/10.3354/meps11331
  4. The effects of temperature on the growth rate and nitrogen content of invasive Gracilaria vermiculophylla and native Gracilaria tikvahiae from Long Island Sound, USA vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.1.30
  5. Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting vol.436, 2015, https://doi.org/10.1016/j.aquaculture.2014.10.037
  6. Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China’s radial sandbanks vol.137, 2017, https://doi.org/10.1016/j.aquabot.2016.11.011
  7. A multiresidue approach for the simultaneous quantification of antibiotics in macroalgae by ultra-high performance liquid chromatography–tandem mass spectrometry vol.1033-1034, 2016, https://doi.org/10.1016/j.jchromb.2016.09.009
  8. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.3
  9. (Laminariales, Phaeophyceae), in eastern Maine, USA vol.57, pp.1, 2018, https://doi.org/10.2216/17-72.1
  10. Bioremediation Potential of the Brackishwater Macroalga Gracilaria tenuistipitata (Rhodophyta) Co-cultured with Pacific White Shrimp Penaeus vannamei (Boone) vol.86, pp.None, 2019, https://doi.org/10.2112/si86-036.1
  11. Key Considerations for the Use of Seaweed to Reduce Enteric Methane Emissions From Cattle vol.7, pp.None, 2014, https://doi.org/10.3389/fvets.2020.597430
  12. Addition of the red macroalgae Turkish Towel Chondracanthus exasperates and taurine improves the performance of alternative plant‐based feeds for juvenile sablefish Anoplopoma fimbria vol.51, pp.8, 2014, https://doi.org/10.1111/are.14654