• Title/Summary/Keyword: protein

Search Result 36,595, Processing Time 0.051 seconds

The Effect of Dietary Protein Levels on Nitrogen Metabolism in Young Korean Women (한국여성의 단백질 섭취수준이 질소대사에 미치는 영향)

  • 구재옥
    • Journal of Nutrition and Health
    • /
    • v.21 no.1
    • /
    • pp.47-60
    • /
    • 1988
  • This study was performed to investigate the effect of dietary levels on protein metabolism in eight healthy Korean adult females. The 20-day metabolic study consisted of 2 day adaptation period and three 6-day experimental. Three experimental diets were low protein (LP : protein 44g), high protein(HP : protein 85g) and high animal protein (HAP : protein-84g). The apparent absorption and balance on nitrogen were significantly higher in high protein than in low protein diet. Nitrogen, absorption rate was about 75% for low protein and about 85% for high protein intake. The mean values of nitrogen balance were -1.28% for low protein and 0.78% for high protein diet. All the subjects were in negative nitrogen balance at the low protein intake while they were in positive nitrogen balance at the high protein intake. The mean daily urinary nitrogen excretion increased with increased level of protein intake. Urea nitrogen was the largest part of the urinary nitrogen. The ratio of urea nitrogen to total urinary nitrogen increased significantly for 79 to 85% as protein intake was doubled.

  • PDF

Funcyional Studies on Gene 2.5 Protein of Bacteriophage T7 : Protein Interactions of Replicative Proteins (박테리오파아지 T7 의 기능에 관한 연구;복제단백질간의 단백질 상호작용)

  • 김학준;김영태
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.185-192
    • /
    • 1996
  • Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, is required for T7 DNA replication, recombination, and repair. T7 gene 2.5 protein has two distinctive domains, DNA binding and C-terminal domain, directly involved in protein-protein interaction. Gene 2.5 protein participates in the DNA replication of Bacteriophage T7, which makes this protein essential for the T7 growth and DNA replication. What gene 2.5 protein makes important at T7 growth and DNA replication is its binding affinity to single-stranded DNA and the protein-protein important at T7 DNA replication proteins which are essential for the T7 DNA synthesis. We have constructed pGST2.5(WT) encoding the wild-type gene 2.5 protein and pGST2.5$\Delta $21C lacking C-terminal 21 amino acid residues. The purified GST-fusion proteins, GST2.5(WT) and GST2.5(WT)$\Delta$21C, were used for whether the carboxyl-terminal domain participates in the protein-protein interactions or not. GST2.5(WT) and GST2.5$\Delta$21C showed the difference in the protein-protein interaction. GST2.5(WT) interacted with T7 DNA polymerase and gene 4 protein, but GST2.5$\Delta$21C did not interact with either protein. Secondly, GST2.5(WT) interacts with gene 4 proteins (helicase/primase) but not GST2.5$\Delta$21C. these results proved the involvement of the carboxyl-terminal domain of gene 2.5 protein in the protein-protein interaction. We clearly conclude that carboxy-terminal domain of gene 2.5 protein is firmly involved in protein-protein interactions in T7 replication proteins.

  • PDF

Simulation of the Effect of Protein Quality at the Different Protein Intake Level on Protein Metabolism (각기 다른 단백질섭취 수준에서 본 식이단백질의 질이 단백질대사에 미치는 영향 -Simulation Model을 이용하여-)

  • 이옥희
    • Journal of Nutrition and Health
    • /
    • v.26 no.9
    • /
    • pp.1033-1048
    • /
    • 1993
  • This study was designed to describe the effect of the protein quality at different intake level of protein on the protein metabolism in the whole body of growing pigs with a simulation model. Varying to the protein level in feeds, four simulations were conducted. The feed protein level, represented as proportions of digestible protein to the metabolic energy (DP/ME, g/MJ), were 6-8, 11-13, 17-19, and 23-25 DP/ME, respectively. Two protein quality and six weeks of growth time were used at each simulation. The objective function for the simulations was protein deposition in the whole body, which was calculated from the experimental results. The parameters in the simulation were determined by the parameter estimation technique. The results obtained from the simulation were as follows: The protein synthesis and breakdown rates(g/day) in the whole body was increased with the increase of protein quality only at lower or required level of protein intake. They showed a parallel behavior in the course of growth, irrespective of quality and level of feed protein intake. The simulated protein deposition and protein synthesis showed a linear relationship between them at different protein quality and level. The affinity parameter showed a linear relationship between them at different protein quality and level. The affinity parameter showed that arginine, tryptophan and isoleucine were more efficient in the stimulation ofbody protein synthesis. Lysine and phenylalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, pheyalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, phenyalanine+tyrosine, and methionine+cystine were oxidized in larger magnitude than lysine and threonine. The oxidation parameter of most amino acids increased with the increase of protein intake beyond the requirement level, but not any more at highest protein intake level. Finally it was found that the improvement of feed protein quality at the lower or required level of protein intake increase protein deposition through a parallel increase of protein synthesis and breakdown.

  • PDF

Dietary Protein Restriction Alters Lipid Metabolism and Insulin Sensitivity in Rats

  • Kang, W.;Lee, M.S.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1274-1281
    • /
    • 2011
  • Dietary protein restriction affects lipid metabolism in rats. This study was performed to determine the effect of a low protein diet on hepatic lipid metabolism and insulin sensitivity in growing male rats. Growing rats were fed either a control 20% protein diet or an 8% low protein diet. Feeding a low protein diet for four weeks from 8 weeks of age induced a fatty liver. Expression of acetyl-CoA carboxylase, a key lipogenic enzyme, was increased in rats fed a low protein diet. Feeding a low protein diet decreased very low density lipoprotein (VLDL) secretion without statistical significance. Feeding a low protein diet down-regulated protein expression of microsomal triglyceride transfer protein, an important enzyme of VLDL secretion. Feeding a low protein diet increased serum adiponectin levels. We performed glucose tolerance test (GTT) and insulin tolerance test (ITT). Both GTT and ITT were increased in protein-restricted growing rats. Our results demonstrate that dietary protein restriction increases insulin sensitivity and that this could be due to low-protein diet-mediated metabolic adaptation. In addition, increased adiponectin levels may influences insulin sensitivity. In conclusion, dietary protein restriction induces a fatty liver. Both increased lipogenesis and decreased VLDL secretion has contributed to this metabolic changes. In addition, insulin resistance was not associated with fatty liver induced by protein restriction.

Effects of Dietary Protein Levels on Organ Growth and Protein Metabolism in Early and Normally Weaned Rats (단백질 섭취수준이 조기 이유 및 정상이유 흰쥐의 기관성장과 단백질 대사에 미치는 영향)

  • 박미나
    • Journal of Nutrition and Health
    • /
    • v.31 no.1
    • /
    • pp.5-12
    • /
    • 1998
  • This study was designed to examine how dietary protein levels affect organ growth and protein metabolism in early and normally weaned rats. Early and normally weaned rats separated fro the dam on the 15th and 121st day postpartum, respectively. were fed diets containing three levels of protein : low(10%) , normal (20%),and high(40%) . On the 35th day, the weight and DNA, RNA and protein contents in brain , liver, and kidney were determined to ascertain organ and cellular growth. Furthermore, serum total protein , albumin , $\alpha$-amino N and creatine and urinary urea N, and creatinine were determined in order to ascertain protein metabolism and renal functions. Dietary protein levels were not observed to significantly affect total DNA content, which may represent an index of cell number in the liver, brain and kidney. Fresh weight and protein/DNA ratio, which may represent indices of cell size, significantly increased in proportion to dietary protein in the kidney. As for the early weaned rats , the liver cell size significantly decreased. Dietary protein levels and weaning periods did not affect serum total protein and albumin . However, serum urea-N significantly increased in proportion to dietary protein levels whereas serum $\alpha$-amino N was decreased by early weaning . Nitrogen retention was lower in early weaned rats fed low or high levels of protein than in normally weaned rats. The results demonstrate that low or high levels of dietary protein have less desirable effects on protein metabolism in prematurely weaned rats.

  • PDF

Heat-Induced Denaturation of Salt Soluble Protein Extracted from Spent Layer Meat (산란 노계육에서 추출한 염용성 단백질의 열변성에 관한 연구)

  • 이성기;장호선;김희주
    • Food Science of Animal Resources
    • /
    • v.18 no.3
    • /
    • pp.209-215
    • /
    • 1998
  • Effects of protein concentration, ionic strength, pH, and temperature range on the heat-induced denaturation of salt soluble protein extracted from spent layer meat were investigated. Viscosity of salt soluble protein heated at 65$^{\circ}C$ for 30 min began to increase sharply above 7 mg/ml of breast protein concentration, and above 21 mg/ml of leg protein concentration, respectively. Both turbidity and viscosity showed the highest value in cooked protein solution with pH 6.0 and 1% NaCl. The turbidity of salt soluble protein started to increase continuously from 40$^{\circ}C$ to 80$^{\circ}C$. The viscosity increased rapidly from 45$^{\circ}C$ to 60$^{\circ}C$ in breast protein, and increased from 50$^{\circ}C$ to 55$^{\circ}C$ in leg protein, respectively, and then kept relatively constant. Breast protein had higher viscosity than leg protein during heat-induced gelation. Therefore, salt soluble protein from spent layer meat was associated with denatured protein (turbidity change) prior to gelation (viscosity change) during heating. Breast protein showed lower thermal transition temperature, and better gel formation than leg protein during heating.

  • PDF

The Effect of Meat Protein and Soy Protein on Calcium Metabolism in Young Adult Korean Women (단백질의 종류가 체내 칼슘 대사에 미치는 영향에 관한 연구)

  • 피재은
    • Journal of Nutrition and Health
    • /
    • v.19 no.1
    • /
    • pp.32-40
    • /
    • 1986
  • The present study conducted to examine the effects of proteins from different sources on Ca excretion in 6 healthy young adult Korean women. The subjects were given meat protein diet for 5 days and soy protein diet for subsequent 5 days. the two diets were similar in protein and Ca contents. Urinary and fecal samples were collected for the last 2 days of each diet period and were analyzed for Ca and P. The results were as following ; 1) Mean daily urinary calcium excretion was 126.5$\pm$22.70mg for meat protein diet and 83.7$\pm$17.19mg for soy protein diet and the difference was significant (P<0.025). 2) Fecal Ca excretion did not show significant difference between two experimental preiod ; 466.9$\pm$73.68 mg of meat portein diet 284.4$\pm$54.96mg for soy protein diet. 3) Three out of six subjects showed negative balance on meat protein diet, but only one showed negative balance on soy protein diet. The averageof the balances on meat protein diet was -65.4 $\pm$68.19 and that of soy protein diet was 155.3$\pm$52.28 ; the difference was significant(P<0.025). 4) Urinary P excretion tended to be higher on meat protein diet but was not significant compared to soy protein diet . Fecal P excretion was significantly higher (P<0.001) on soy protein diet. Overall P balances for meat protein diet and soy protein diet were 219.94 mg and 229.46mg respectively (P<0.05). The above results show that urinary Ca excretion was significantly higher on meat protein diet but fecal excretion did not show significant difference between meat protein diet and soy protein diet. The overall Ca balance was significantly higher on Soy protein diet compared to meat protein diet.

  • PDF

Immunocytochemical Localization Qf raf Protein Kinase in Cerebrum of Geoclemys reevesii (Gray) (남생이(Geoclemys reevesii) 대뇌에 있어서 raf Protein Kinase의 면역세포화학적 분포)

  • 최원철;문현근
    • The Korean Journal of Zoology
    • /
    • v.33 no.2
    • /
    • pp.141-151
    • /
    • 1990
  • Raf protein kinases and protein kinase C belong to serine/threonine-specific proteins in the cytoplasin, and are similar to each other in functional structure and the aspect of the distribution of celI. The distribution of raf protein kinase in the cerebrum of Geoclemys reevesfi as studied by using the antibodies against a-raf and c-raf protein kinase which induce the expression of raf fainily oncogenes. In general, raf protein kinases were distributed in such restricted regions as the general pallium, hippocampal formation, pdmordiuin hippocampi,nucleus of lateral olfactory tract, basal amygdaloid nucleus, and bed of stria terminalis. Immunological labeling of c-raf protein kinase was more widespread than that of a-raf. However, the intensity of the labeling of c-raf was lower than that of a-raf. The spherical cells of basal amygdaloid nucleus is a ring-like form, because only the cytoplasm was imunolabeled. Especially, c-raf protein kinase occurred in the cells which contained protein kinase C abundandy such as pyramidal cells and Purkinje cells. This suggests that a- and e-raf protein kinases may synegistically induce carclnoma with myc gene which is activated by protein kinase C.

  • PDF

Optimum Dietary Protein Level of Ayu (Plecoglossus altivelis) (은어 사료의 적정 단백질 함량)

  • 이상민;김경덕
    • Journal of Aquaculture
    • /
    • v.12 no.2
    • /
    • pp.145-153
    • /
    • 1999
  • This study was conducted to determine the protein requirement of ayu (Plecoglossus altivelis). Two replicate groups of fish initially averaging 6.6 g were fed the five isocaloric diets containing different protein level from 29% to 57% in a flow-through freshwater system for 25 days. White fish meal was used as a sole protein source. Weight gain and feed efficiency of fish increased significantly with dietary protein level up to 43% (P<0.05) with no additional response above this level. Protein and lipid retention, moisture, protein and lipid contents of body were not affected by dietary protein levels (P>0.05). Daily protein intake increased significantly with dietary protein level, whereas protein efficiency ratio of fish fed the 57% dietary protein decreased (P<0.05). The data obtained in this study indicate that a 43% dietary protein level could be recommended for the optimum growth of ayu.

  • PDF

Value and utilization of rice protein (쌀단백질의 가치와 이용방법)

  • Jung, Kwangho
    • Food Science and Industry
    • /
    • v.52 no.1
    • /
    • pp.60-67
    • /
    • 2019
  • Protein is a major nutrient of food and has long been studied for nutritional and utility value. Among them, rice protein is attracting attention because of its hypoallergenic characteristics and nutritional value. Rice proteins are divided into endosperm protein and bran protein depending on their location. The two proteins differ in their nutritional characteristics and applications. The endosperm protein is an insoluble protein and has an advantage of digestion and absorption. Rice bran protein dissolves well in water. Its amino acid value is high enough to be comparable to that of soy protein, and it has strong antioxidant ability. Rice protein is a healthy vegetable protein because of its health and hypoallergenic properties. It has been widely used in children's or patients' food, and recently for muscle supplement and health food. Rice protein is considered to be a very effective and useful material as it has been discovered so far.