DOI QR코드

DOI QR Code

Development of a sustainable land-based Gracilaria cultivation system

  • Kim, Jang K. (Department of Marine Sciences, University of Connecticut) ;
  • Yarish, Charles (Department of Ecology and Evolutionary Biology, University of Connecticut)
  • Received : 2014.04.10
  • Accepted : 2014.08.26
  • Published : 2014.09.15

Abstract

Land-based seaweed (Gracilaria) cultivation systems may provide products with high quality and biosafety for human consumption, as well as for other high value applications. However, a limitation for this land based system is high management costs. The objective of this study was to determine if the management costs for Gracilaria cultivation can be reduced without a decrease in productivity by using $CO_2$ injection along with a high stocking density and high photosynthetically active radiation (PAR), and commercially available fertilizers. When Gracilaria tikvahiae was cultivated at a high stocking density and high PAR, coupled with $CO_2$ enhancement, the productivity was significantly higher than that at a lower stocking density, low light without $CO_2$ injection. We also found that G. tikvahiae grown in a medium of commercially available fertilizer (Jack's Special, JS) showed a similar growth rate and productivity to that grown in von Stosch's enriched (VSE) seawater, while the cost for JS media is only 2% of the cost for VSE. These results suggest that $CO_2$ injection and commercial fertilizer may be a potential way to provide sustainability in land-based Gracilaria cultivation systems.

Keywords

References

  1. Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H. & Sousa-Pinto, I. 2011. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77-87. https://doi.org/10.1016/j.aquaculture.2010.12.036
  2. Bidwell, R. G. S. & McLachlan, J. 1985. Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J. Exp. Mar. Biol. Ecol. 86:15-46. https://doi.org/10.1016/0022-0981(85)90040-1
  3. Bird, N. L., Chen, L. C. -M. & McLachlan, J. 1979. Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta), and Fucus serratus (Fucales, Phaeophyta). Bot. Mar. 22:521-528.
  4. Caines, S., Manriquez-Hernandez, J. A., Duston, J., Corey, P. & Garbary, D. J. 2014. Intermittent aeration affects the bioremediation potential of two red algae cultured in finfish effluent. J. Appl. Phycol. Advanced online publication. http://dx.doi.org/10.1007/s10811-014-0247-0.
  5. Corey, P., Kim, J. K., Duston, J. & Garbary, D. J. 2014. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae 29:35-45. https://doi.org/10.4490/algae.2014.29.1.035
  6. Corey, P., Kim, J. K., Duston, J., Garbary, D. J. & Prithiviraj, B. 2013. Bioremediation potential of Palmaria palmata and Chondrus crispus (Basin Head): effect of nitrate and ammonium ratio as nitrogen source on nutrient removal. J. Appl. Phycol. 25:1349-1358. https://doi.org/10.1007/s10811-013-9977-7
  7. Corey, P., Kim, J. K., Garbary, D. J., Prithiviraj, B. & Duston, J. 2012. Cultivation of red macroalgae for potential integration with Atlantic halibut: effects of temperature and nitrate concentration on growth and nitrogen removal. J. Appl. Phycol. 24:441-448. https://doi.org/10.1007/s10811-011-9734-8
  8. Craigie, J. S. & Shacklock, P. F. 1989. Culture of Irish moss. In Boghen, A. D. (Ed.) Cold-Water Aquaculture in Atlantic Canada. Canadian Institute for Research on Regional Development, University of Moncton, Moncton, NB, pp. 241-270.
  9. DeBusk, T. A. & Ryther, J. H. 1984. Effects of seawater exchange, pH and carbon supply on the growth of Gracilaria tikvahiae (Rhodophyceae) in large-scale cultures. Bot. Mar. 27:357-362.
  10. Enright, C. T. & Craigie, J. S. 1981. Effects of temperature and irradiance on growth and respiration of Chondrus crispus Stackh. In Levring, T. (Ed.) Proc. 10th Int. Seaweed Symp., Walter de Gruyter, Berlin, pp. 271-276.
  11. Figueroa, F. L., Israel, A., Neori, A., Martinez, B., Malta, E. J., Put, A., Inken, S., Marquardt, R., Abdala, R. T. & Korbee, N. 2010. Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in Gracilaria conferta (Rhodophyta). Mar. Pollut. Bull. 60:1768-1778. https://doi.org/10.1016/j.marpolbul.2010.06.009
  12. Food and Agriculture Organization of the United Nations. 2014. Global Aquaculture Production. Available from: http://www.fao.org/fishery/statistics/global-aquaculture-production/en. Accessed Jul 7, 2014.
  13. Friedlander, M. 2001. Inorganic nutrition in pond cultivated Gracilaria conferta (Rhodophyta): nitrogen, phosphate and sulfate. J. Appl. Phycol. 13:279-286. https://doi.org/10.1023/A:1011139329415
  14. Friedlander, M. & Levy, I. 1995. Cultivation of Gracilaria in outdoor tanks and ponds. J. Appl. Phycol. 7:315-324. https://doi.org/10.1007/BF00004005
  15. Gao, K., Aruga, Y., Asada, K. & Kiyohara, M. 1993. Influence of enhanced $CO_2$ on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J. Appl. Phycol. 5:563-571. https://doi.org/10.1007/BF02184635
  16. Hanisak, M. D. 1987. Cultivation of Gracilaria and other macroalgae in Florida for energy production. In Bird, K. T. & Benson, P. H. (Eds.) Seaweed Cultivation for Renewable Resources. Elsevier, New York, pp. 191-218.
  17. Hanisak, M. D. & Ryther, J. H. 1984. Cultivation biology of Gracilaria tikvahiae in the United States. Hydrobiologia 116/117:295-298. https://doi.org/10.1007/BF00027688
  18. Harrison, K. L. 2008. Organic plus: regulating beyond the current organic standards. 25 Pace Envtl. L. Rev. 211-234. Available from: http://digitalcommons.pace.edu/pelr/vol25/iss1/5. Accessed Jul 7, 2014.
  19. Huguenin, J. E. 1976. An examination of problems and potentials for future large-scale intensive seaweed culture systems. Aquaculture 9:313-342. https://doi.org/10.1016/0044-8486(76)90074-0
  20. Israel, A., Katz, S., Dubinsky, Z., Merrill, J. E. & Friedlander, M. 1999. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J. Appl. Phycol. 11:447-453. https://doi.org/10.1023/A:1008122306268
  21. Kim, J. K., Duston, J., Corey, P. & Garbary, D. J. 2013a. Marine finfish effluent bioremediation: effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta). Aquaculture 414/415:210-216. https://doi.org/10.1016/j.aquaculture.2013.08.008
  22. Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K. & Yarish, C. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J. Appl. Phycol. 19:431-440. https://doi.org/10.1007/s10811-006-9150-7
  23. Kim, J. K., Kraemer, G. P. & Yarish, C. 2012. Metabolic plasticity of nitrogen assimilation by Porphyra umbilicalis (Linnaeus) Kutzing. J. Ocean Univ. China 11:517-526. https://doi.org/10.1007/s11802-012-2116-2
  24. Kim, J. K., Kraemer, G. P. & Yarish, C. 2013b. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra. PLoS One 8:e69961. https://doi.org/10.1371/journal.pone.0069961
  25. Kim, J. K., Kraemer, G. P. & Yarish, C. 2014. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433:148-156. https://doi.org/10.1016/j.aquaculture.2014.05.034
  26. Lapointe, B. E. & Ryther, J. H. 1978. Some aspects of the growth and yield of Gracilaria tikvahiae in culture. Aquaculture 15:185-193. https://doi.org/10.1016/0044-8486(78)90030-3
  27. Lapointe, B. E. & Ryther, J. H. 1979. The effects of nitrogen and seawater flow rate on the growth and biochemical composition of Gracilaria foliifera var. angustissima in mass outdoor cultures. Bot. Mar. 22:529-537.
  28. Martinez-Aragon, J. F., Hernandez, I., Perez-Llorens, J. L., Vazquez, R. & Vergara, J. J. 2002. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters. 1. Phosphate. J. Appl. Phycol. 14:365-374. https://doi.org/10.1023/A:1022134701273
  29. Mata, T. M., Martins, A. A. & Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14:217-232. https://doi.org/10.1016/j.rser.2009.07.020
  30. Matos, J., Costa, S., Rodrigues, A., Pereira, R. & Sousa Pinto, I. 2006. Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture 252:31-42. https://doi.org/10.1016/j.aquaculture.2005.11.047
  31. Nagler, P. L., Glenn, E. P., Nelson, S. G. & Napolean, S. 2003. Effects of fertilization treatment and stocking density on the growth and production of the economic seaweed Gracilaria parvispora (Rhodophyta) in cage culture at Molokai, Hawaii. Aquaculture 219:379-391. https://doi.org/10.1016/S0044-8486(02)00529-X
  32. Neori, A., Shpigel, M. & Ben-Ezra, D. 2000. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186:279-291. https://doi.org/10.1016/S0044-8486(99)00378-6
  33. Nettleton, J. C., Mathieson, A. C., Thornber, C., Neefus, C. D. & Yarish, C. 2013. Introduction of Gracilaria vermiculophylla (Rhodophyta, Gracilariales) to New England, USA: estimated arrival times and current distribution. Rhodora 115:28-41. https://doi.org/10.3119/12-07
  34. Ott, F. D. 1965. Synthetic media and techniques for the xenic cultivation of marine algae and flagellata. Va. J. Sci. 16:205-218.
  35. Pereira, R. & Yarish, C. 2008. Mass production of marine macroalgae. In Jorgensen, S. E. & Fath, B. D. (Eds.) Encyclopedia of Ecology. Vol. 3. Ecological Engineering. Oxford, Elsevier, pp. 2236-2247.
  36. Pereira, R., Yarish, C. & Critchley, A. T. 2013. Seaweed aquaculture for human foods in land based and IMTA systems. In Meyers, R. A. (Ed.) Encyclopedia of Sustainability Science and Technology. Springer, New York, pp. 9109-9128.
  37. Phillips, J. C. & Hurd, C. L. 2004. Kinetics of nitrate, ammonium, and urea uptake by four intertidal seaweeds from New Zealand. J. Phycol. 40:534-545. https://doi.org/10.1111/j.1529-8817.2004.03157.x
  38. Qi, Z., Liu, H., Li, B., Mao, Y., Jiang, Z., Zhang, J. & Fang, J. 2010. Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino. Aquaculture 300:189-193. https://doi.org/10.1016/j.aquaculture.2010.01.019
  39. Redmond, S., Green, L., Yarish, C., Kim, J. & Neefus, C. 2014. New England seaweed culture handbook-nursery systems. Connecticut Sea Grant CTSG-14-01. Available from: http://seagrant.uconn.edu/publications/aquaculture/handbook.pdf. Accessed Jul 7, 2014.
  40. Ryder, E., Nelson, S., Glenn, E., Nagler, P., Napolean, S. & Fitzsimmons, K. 2004. Review: production of Gracilaria parvispora in two-phase polyculture systems in relation to nutrient requirements and uptake. Bull. Fish. Res. Agency Suppl. 1:71-76.
  41. Simpson, F. J., Neish, A. C., Shacklock, P. F. & Robson, D. R. 1978. The cultivation of Chondrus crispus: effect of pH on growth and production of carrageenan. Bot. Mar. 21:229-236.
  42. Tyler, A. C., McGlathery, K. J. & Macko, S. A. 2005. Uptake of urea and amino acids by the macroalgae Ulva lactuca (Chlorophyta) and Gracilaria vermiculophylla (Rhodophyta). Mar. Ecol. Prog. Ser. 294:161-172. https://doi.org/10.3354/meps294161
  43. von Stosch, H. A. 1963. Wirkungen von jod und arsenit auf meeresalgen in kultur. In Davy de Virville, A. & Feldmann, J. (Eds.) Proc. 4th Int. Seaweed Symp., Pergamon Press, Oxford, pp. 142-150.

Cited by

  1. The short-term effects of elevated CO2 and ammonium concentrations on physiological responses in Gracilariopsis lemaneiformis (Rhodophyta) vol.20, pp.1, 2017, https://doi.org/10.1186/s41240-017-0063-y
  2. The effects of temperature on the growth rate and nitrogen content of invasive Gracilaria vermiculophylla and native Gracilaria tikvahiae from Long Island Sound, USA vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.1.30
  3. Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting vol.436, 2015, https://doi.org/10.1016/j.aquaculture.2014.10.037
  4. Prospects and challenges for industrial production of seaweed bioactives vol.51, pp.5, 2015, https://doi.org/10.1111/jpy.12326
  5. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.3
  6. Epiphytism differences in the commercial species of Gracilaria, G. fisheri, G. tenuistipitata, and G. salicornia, from Thailand pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1570-7
  7. Comparison of ethanol production from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in aquaculture system in Thailand pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1536-9
  8. Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1552-9
  9. Intensive land-based production of red and green macroalgae for human consumption in the Pacific Northwest: an evaluation of seasonal growth, yield, nutritional composition, and contaminant levels vol.33, pp.1, 2018, https://doi.org/10.4490/algae.2018.33.2.21
  10. Green seaweed Ulva sp. as an alternative ingredient in plant-based practical diets for Pacific white shrimp, Litopenaeus vannamei vol.30, pp.2, 2018, https://doi.org/10.1007/s10811-017-1288-y
  11. Land-based drip-irrigated culture of Ulva compressa : The effect of culture platform design and nutrient concentration on biomass production and protein content vol.13, pp.6, 2014, https://doi.org/10.1371/journal.pone.0199287
  12. Sustainability of the seaweed Hypnea pseudomusciformis farming in the tropical Southwestern Atlantic vol.121, pp.None, 2021, https://doi.org/10.1016/j.ecolind.2020.107101
  13. Optimizing antioxidant activity in Agarophyton vermiculophyllum for functional packaging vol.54, pp.None, 2014, https://doi.org/10.1016/j.algal.2021.102232