Acknowledgement
This research was supported by an agenda research program funded by the Rural Development Administration (PJ15871) and the Next-Generation BioGreen 21 Program (PJ013250).
References
- Ansari, M. Z., Yadav, G., Gokhale, R. S. and Mohanty, D. 2004. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32:W405-W413. https://doi.org/10.1093/nar/gkh359
- Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A.-M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.-H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M.-A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J. and Hopwood, D. A. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141-147. https://doi.org/10.1038/417141a
- Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. and Schoner, B. E. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43-49. https://doi.org/10.1016/0378-1119(92)90627-2
- Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., Kwon, S.-K., Crusemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y.-S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129. https://doi.org/10.1038/ismej.2015.95
- Cobb, R. E., Wang, Y. and Zhao, H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4:723-728. https://doi.org/10.1021/sb500351f
- Cotter, P. D., Hill, C. and Ross, R. P. 2005. Bacterial lantibiotics: strategies to improve therapeutic potential. Curr. Protein Pept. Sci. 6:61-75. https://doi.org/10.2174/1389203053027584
- Deshpande, B. S., Ambedkar, S. S. and Shewale, J. G. 1988. Biologically active secondary metabolites from Streptomyces. Enzyme Microb. Technol. 10:455-473. https://doi.org/10.1016/0141-0229(88)90023-3
- Dischinger, J., Josten, M., Szekat, C., Sahl, H.-G. and Bierbaum, G. 2009. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS ONE4:e6788. https://doi.org/10.1371/journal.pone.0006788
- Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P. and Hacquard, S. 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175:973-983. https://doi.org/10.1016/j.cell.2018.10.020
- Genilloud, O. 2017. Actinomycetes: still a source of novel antibiotics. Nat. Prod. Rep. 34:1203-1232. https://doi.org/10.1039/C7NP00026J
- Gomes, K. M., Duarte, R. S. and de Freire Bastos, M. D. C. 2017. Lantibiotics produced by Actinobacteria and their potential applications (a review). Microbiology (Reading) 163:109-121. https://doi.org/10.1099/mic.0.000397
- Harir, M., Bendif, H., Bellahcene, M., Fortas, Z. and Pogni, R. 2018. Streptomyces secondary metabolites. In: Basic biology and applications of actinobacteria, ed. by E. Shymaa, pp. 99-122. IntechOpen, London, UK.
- Hu, D., Chen, Y., Sun, C., Jin, T., Fan, G., Liao, Q., Mok, K. M. and Lee, M.-Y. S. 2018. Genome guided investigation of antibiotics producing actinomycetales strain isolated from a Macau mangrove ecosystem. Sci. Rep. 8:14271. https://doi.org/10.1038/s41598-018-32076-z
- Jabes, D., Brunati, C., Candiani, G., Riva, S., Romano, G. and Donadio, S. 2011. Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Grampositive pathogens. Antimicrob. Agents Chemother. 55:1671-1676. https://doi.org/10.1128/AAC.01288-10
- Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. and Hopwood, D. A. 2000. Practical Streptomyces genetics. John Innes Foundation, Norwich, UK. 613 pp.
- Kim, D.-R., Cho, G., Jeon, C.-W., Weller, D. M., Thomashow, L. S., Paulitz, T. C. and Kwak, Y.-S. 2019a. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10:4802. https://doi.org/10.1038/s41467-019-12785-3
- Kim, D.-R., Jeon, C.-W., Shin, J.-H., Weller, D. M., Thomashow, L. and Kwak, Y.-S. 2019b. Function and distribution of a lantipeptide in strawberry Fusarium wilt disease-suppressive soils. Mol. Plant-Microbe Interact. 32:306-312. https://doi.org/10.1094/MPMI-05-18-0129-R
- Lee, N., Hwang, S., Kim, J., Cho, S., Palsson, B. and Cho, B.-K. 2020. Mini review: genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 18:1548-1556. https://doi.org/10.1016/j.csbj.2020.06.024
- Lindow, S. E. and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
- Maiti, P. K., Das, S., Sahoo, P. and Mandal, S. 2020. Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Sci. Rep. 10:10092. https://doi.org/10.1038/s41598-020-66984-w
- Medema, M. H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M. A., Weber, T., Takano, E. and Breitling, R. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39:W339-W346. https://doi.org/10.1093/nar/gkr466
- Oskay, M. 2009. Antifungal and antibacterial compounds from Streptomyces strains. Afr. J. Biotechnol. 8:3007-3017.
- Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. and Fierer, N. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12:2885-2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x