DOI QR코드

DOI QR Code

A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4

  • Kim, Da-Ran (Research Institute of Life Science, Gyeongsang National University) ;
  • Kwak, Youn-Sig (Research Institute of Life Science, Gyeongsang National University)
  • Received : 2021.03.17
  • Accepted : 2021.04.07
  • Published : 2021.08.01

Abstract

Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.

Keywords

Acknowledgement

This research was supported by an agenda research program funded by the Rural Development Administration (PJ15871) and the Next-Generation BioGreen 21 Program (PJ013250).

References

  1. Ansari, M. Z., Yadav, G., Gokhale, R. S. and Mohanty, D. 2004. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32:W405-W413. https://doi.org/10.1093/nar/gkh359
  2. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A.-M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.-H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M.-A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J. and Hopwood, D. A. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141-147. https://doi.org/10.1038/417141a
  3. Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. and Schoner, B. E. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  4. Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., Kwon, S.-K., Crusemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y.-S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129. https://doi.org/10.1038/ismej.2015.95
  5. Cobb, R. E., Wang, Y. and Zhao, H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4:723-728. https://doi.org/10.1021/sb500351f
  6. Cotter, P. D., Hill, C. and Ross, R. P. 2005. Bacterial lantibiotics: strategies to improve therapeutic potential. Curr. Protein Pept. Sci. 6:61-75. https://doi.org/10.2174/1389203053027584
  7. Deshpande, B. S., Ambedkar, S. S. and Shewale, J. G. 1988. Biologically active secondary metabolites from Streptomyces. Enzyme Microb. Technol. 10:455-473. https://doi.org/10.1016/0141-0229(88)90023-3
  8. Dischinger, J., Josten, M., Szekat, C., Sahl, H.-G. and Bierbaum, G. 2009. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS ONE4:e6788. https://doi.org/10.1371/journal.pone.0006788
  9. Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P. and Hacquard, S. 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175:973-983. https://doi.org/10.1016/j.cell.2018.10.020
  10. Genilloud, O. 2017. Actinomycetes: still a source of novel antibiotics. Nat. Prod. Rep. 34:1203-1232. https://doi.org/10.1039/C7NP00026J
  11. Gomes, K. M., Duarte, R. S. and de Freire Bastos, M. D. C. 2017. Lantibiotics produced by Actinobacteria and their potential applications (a review). Microbiology (Reading) 163:109-121. https://doi.org/10.1099/mic.0.000397
  12. Harir, M., Bendif, H., Bellahcene, M., Fortas, Z. and Pogni, R. 2018. Streptomyces secondary metabolites. In: Basic biology and applications of actinobacteria, ed. by E. Shymaa, pp. 99-122. IntechOpen, London, UK.
  13. Hu, D., Chen, Y., Sun, C., Jin, T., Fan, G., Liao, Q., Mok, K. M. and Lee, M.-Y. S. 2018. Genome guided investigation of antibiotics producing actinomycetales strain isolated from a Macau mangrove ecosystem. Sci. Rep. 8:14271. https://doi.org/10.1038/s41598-018-32076-z
  14. Jabes, D., Brunati, C., Candiani, G., Riva, S., Romano, G. and Donadio, S. 2011. Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Grampositive pathogens. Antimicrob. Agents Chemother. 55:1671-1676. https://doi.org/10.1128/AAC.01288-10
  15. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. and Hopwood, D. A. 2000. Practical Streptomyces genetics. John Innes Foundation, Norwich, UK. 613 pp.
  16. Kim, D.-R., Cho, G., Jeon, C.-W., Weller, D. M., Thomashow, L. S., Paulitz, T. C. and Kwak, Y.-S. 2019a. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10:4802. https://doi.org/10.1038/s41467-019-12785-3
  17. Kim, D.-R., Jeon, C.-W., Shin, J.-H., Weller, D. M., Thomashow, L. and Kwak, Y.-S. 2019b. Function and distribution of a lantipeptide in strawberry Fusarium wilt disease-suppressive soils. Mol. Plant-Microbe Interact. 32:306-312. https://doi.org/10.1094/MPMI-05-18-0129-R
  18. Lee, N., Hwang, S., Kim, J., Cho, S., Palsson, B. and Cho, B.-K. 2020. Mini review: genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 18:1548-1556. https://doi.org/10.1016/j.csbj.2020.06.024
  19. Lindow, S. E. and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
  20. Maiti, P. K., Das, S., Sahoo, P. and Mandal, S. 2020. Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Sci. Rep. 10:10092. https://doi.org/10.1038/s41598-020-66984-w
  21. Medema, M. H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M. A., Weber, T., Takano, E. and Breitling, R. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39:W339-W346. https://doi.org/10.1093/nar/gkr466
  22. Oskay, M. 2009. Antifungal and antibacterial compounds from Streptomyces strains. Afr. J. Biotechnol. 8:3007-3017.
  23. Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. and Fierer, N. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12:2885-2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x