• Title/Summary/Keyword: antibacterial

Search Result 3,157, Processing Time 0.035 seconds

Characterization of Antibacterial Activity and Synergistic Effect of Cationic Antibacterial Peptide-resin Conjugates

  • Kim, Jeong-Min;Jang, Su-Jung;Yang, Mi-Hwa;Cho, Hyeong-Jin;Lee, Keun-Hyeung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3928-3932
    • /
    • 2011
  • We synthesized peptide-resin conjugates (1 and 2) by immobilizing ${\beta}$-sheet antibacterial peptide and ${\alpha}$ helical antibacterial peptide on PEG-PS resin, respectively. Conjugate 1 showed considerable antibacterial activity in various conditions, whereas conjugate 2 did not exhibit antibacterial activity. The growths of various bacteria were inhibited by conjugate 1 even at lower concentrations than MIC. Conjugate 1 killed bacteria at MIC and had a potent synergistic effect with current antibacterial agents such as vancomycin and tetracycline, respectively. Overall results indicate that polymer surface modification using antibacterial ${\beta}$ sheet peptide is a powerful way to prevent microbial contamination on polymer surfaces.

Modified membrane with antibacterial properties

  • Aryanti, P.T.P.;Sianipar, M.;Zunita, M.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.463-481
    • /
    • 2017
  • Bacteria have been considered as a major foulant that initiates the formation of biofilm on the polymeric membrane surface. Some polymeric membranes are naturally antibacterial and have low fouling properties, however, numerous efforts have been devoted to improve their antibacterial performance. These modifications are mostly carried out through blending the membrane with an antibacterial agent or introducing the antibacterial agent on the membrane surface by chemical grafting. Currently, a significant number of researches have reported nanocomposite membrane as a new approach to fabricate an excellent antibacterial membrane. The antibacterial nanoparticles are dispersed homogenously in membrane structure by blending method or coating onto the membrane surface. Aim of the modifications is to prevent the initial attachment of bacteria to membrane surface and kill bacteria when attached on the membrane surface. In this paper, several studies on antibacterial modified membranes, particularly for water treatment, will be reviewed comprehensively. Special attention will be given on polymeric membrane modifications by introducing antibacterial agents through different methods, such as blending, grafting, and coating.

A Study on Antibacterial Assesment of High Efficiency Antibacterial Air Filter (고효율 항균 필터의 항균력 평가에 관한 연구)

  • 권혁구;정진도;류해열;정우성;박덕신
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.549-554
    • /
    • 2002
  • Recently, interest in hygiene has been arouse in the health care field. Consequently, Filters with antibacterial agent applied to improve air quality by sterilizing bacteria, fungi, etc. We actually installed antibacterial air filter containing 2.5wt%Ag zeolite on the air intake route to air-conditioner in passenger cu, and evaluated filter's performance on antibacterial effect. By the microbe liquid spattering method, we found that the antibacterial air filter has notably sufficient antibacterial efficiency against standard strains and wild type strains. Antibacterial effect was observed at whole area of filter media by zone of inhibition test. The evaluation of microbe quantity was conducted through mixing dilution plate culture method. In comparison with ordinary filter, the amount of germs attached on antibacterial air filters was larger. The amount of germs attached on ordinary filters was very small since ordinary filters contained less dust. In comparison in antibacterial air filter with thickness, the amount of germs attached on 9mm filter was smaller than that of on 6mm filter. i.e. thicker filter, superior efficiency.

  • PDF

EFFECT OF POLYPHOSPHATE IN ROOT CANAL SEALERS ON THE GROWTH OF ORAL BACTERIA (Polyphosphate가 함유된 근관충전재가 구강세균의 성장에 미치는 영향)

  • 박석범;최기운;최호영
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.141-152
    • /
    • 2001
  • Eliminating the infecting bacteria of the root canal system and preventing reinfection must be the main objectives of all endodontic works. None of commercially available root canal sealers have the properties of desirable tissue compatibility and strong antibacterial activity. The purpose of this study is to develope an ideal root canal sealer using commercially available polyphosphate (polyP), Calgon, which is known to be antibacterial and safe. For the study. resin type AH26, zinc oxide eugenol type Tubli Seal. Ca(OH)$_2$ type Apexit as base sealers for polyP (0~3%) and para formaldehyde containing N2 as a control base were selected. Specimens (3$\times$4mm) of the sealers were prepared in a 37$^{\circ}C$ incubator for 3 and 10 days and their antibacterial activity against streptococci and black pigmented anaerobic rods was observed using an agar diffusion method. The result were as follows: 1. Among 3 day old root canal sealers. N2 as a positive control showed the strongest antibacterial effect. followed by AH26. Tubli Seal and. Apexit which barely showed antibacterial activity against the test bacteria. In contrast. 10 day old AH26 showed a greater antibacterial activity than 10 day old N2. 2. All sealer specimens showed a greater antibacterial activity against black pigmented anaerobic rods than streptococci. Three day old ones appeared to be more antibacterial than 10 day old ones except for Apexit. 3. As compared to N2, 3 day old AH26 demonstrated a similar antibacterial activity against black pig mented anaerobic rods but to a lesser extent to streptococci. Ten day old AH26 showed a greater antibacterial activity against black pigmented anaerobic rods than 10 day old N2. 4. As compared to AH26. Tubli Seal generally revealed a lower antibacterial activity but it showed a greater antibacterial activity aginst S. gordonii Challis. 5. Enhancement of antibacterial activity by polyP was more clearly observed when it was added to Ca(OH)$^{\circ}C$ based root canal sealers. Tubli Seal and N2. 6. The addition of polyP enhanced the antibacterial activity of 3 day old AH26 against S. gordonii G9B (16%) and Challis (29%), and P. gingivalis 2561 (24%) only. Moreover, polyP failed to increase antibacterial activity of 10 day old AH26 against the test strains but P. gingivalis A7A1 28(13%). 7. The addition of polyP increased the antibacterial effect of 3 day old Tubli Seal on several test bacteria including s. mutans GS 5 (50%). s. gordonii G9B (47%) and Challis (122%). and all the test strains of P. gingivalis (13~35%) except for 9 14K 1. The addition of polyP to 10 day old Tubli Seal increased antibacterial activity of the root canal sealer against most test strains. 8. 3 day old Apexit failed to show antibacterial activity. if any very little against S. mutans GS 5 and Pr. intermedia ATCC 49046. However. polyP increased its antibacterial activity by 50 and 69%, respectively. Increase of antibacterial activity of 10 day old Apexit by polyP was more clearly observed than that of 3 day old one.

  • PDF

Antibacterial Finishing of Footwear Nylon 66 Fabric with Sericite and Medilite (견운모와 맥반석을 이용한 신발용 나일론 66직물의 항균가공)

  • Lee, Eon-Pil;Lee, Jae-Ho
    • Fashion & Textile Research Journal
    • /
    • v.9 no.1
    • /
    • pp.96-102
    • /
    • 2007
  • Antibacterial finishing of nylon 66 fabrics was carried out with sericite and medilite which are a cheap price antibacterial agents and had excellent antibacterial effects. The particle size of sericite and medilite was 15 ${\mu}m$ and 30 ${\mu}m$. The antibacterial and deodorant ratio, tensile and tear strength, peel strength were examined to investigate the change of physical properties and antibacterial effect. The results are as follows. 1. Peel strength is increased with increasing adhesive content, and satisfied standard value of peel strength when adhesive content is 20 $g/m^2$. Also peel strength was decreased with increasing antibacterial agent content and particle size in the adhesives. 2. Tensile and tear strength were not related with antibacterial agent content in the adhesives. 3. Laundering nylon 66 fabric treated with antibacterial agent, the optimum content satisfying Korean Standard(KS) is 8%. The antibacterial and deodorant ratio were not affected by several types of adhesives.

Antibacterial Activity of Chitosan against Staphylococcus aureus -The Effect of Watersolubility, Degree of Deacetylation and Molecular Weight of Chitosan on Antibacterial Activity- (포도상구균(Staphylococcus aureus)에 대한 키토산의 항균성 -키토산의 수용성, 탈아세틸화도 및 분자량이 항균성에 미치는 효과-)

  • 한영숙;전동원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.807-818
    • /
    • 2004
  • The antibacterial activities of several types of chitosan were measured against Staphylococcus aureus and evaluated for their application to antibacterial textile finishing. The % reduction of bacteria of the chitosans prepared in our laboratory were between 72 and 87%. The two water-soluble chitosans with molecular weights 1,000 and 3,000 did not show antibacterial activities. The deacetylation of chitosan was appeared to increase antibacterial activity. The % reduction in bacterial density of the 86%-deacetylated chitosan solution was 56% where that of the 76%-deacetylated chitosan solution was only 17% at 0.1% chitosan concentration. Molecular weights of the chitosans seemed not to affect antibacterial activities of chitosans. The antibacterial activity of the acid-soluble, 86%-deacetylated chitosan with 4 cps showed 98% of the % reduction at the level of 0.2% chitosan. The % reduction of bacteria of this chitosan was higher at the higher concentration of acetic acid in the chitosan-bacterial mixture. The antibacterial activity was increased with the pH change over the range of 4.0 to 6.5. The 100% of the % reduction of bacteria was achieved within 4 hour incubation of the chitosan-bacterial mixture. According to the data obtained from the above experiments, the four chitosans among the six prepared in our laboratory were proved to be valuable for antibacterial textile finishing.

Antibacterial potential of the extracts derived from leaves and in vitro raised calli of medicinal plants Pterocarpus marsupium Roxb., Clitoria ternatea L., and Sanseveiria cylindrica Bojer ex Hook

  • Shahid, M;Shahzad, A;Anis, M
    • Advances in Traditional Medicine
    • /
    • v.9 no.2
    • /
    • pp.174-181
    • /
    • 2009
  • Pterocarpus marsupium, Clitoria ternatea, and Sanseveiria cylindrica are some of the important and endangered medicinal plant species of India. Despite of medicinal properties, antibacterial potential of the plants have not yet been explored. The present study was designed to optimize the in vitro technique for micropropagation and to screen the extracts from leaves and in vitro raised calli for antibacterial properties. Excised leaf-explants from the parent plants were surface sterilized and cultivated on Murashige & Skoog's (MS) medium containing $N^6$-benzyladenine (BA) in concentrations of 1, 2, 5, and $10{\mu}M$. Optimal growth of calli was noticed at a concentration of $5{\mu}M$, therefore the extracts from calli grown at this concentration were further studied for antibacterial activity. Both alcoholic and aqueous extracts from leaves of respective plants, and their in vitro raised calli were tested for antibacterial activity by agar well diffusion method against a range of Gram-positive and Gram-negative bacteria. Aqueous extracts showed antibacterial activity against limited number of bacterial species; notably the extracts of C. ternatea which showed antibacterial activity against Streptococcus pyogenes, Bacillus subtilis and Bacillus cereus. Alcoholic extracts of all three plants showed antibacterial activity against a wider range of bacteria. Among the Gram-positive bacteria, extracts from C. ternatea showed strong antibacterial activity against Bacillus spp., whereas the extracts of S. cylindrica showed good antibacterial potential for Staphylococcus aureus, S. epidermidis and S. pyogenes. The extracts from all three plants showed antibacterial activity against Gram-negative bacteria, including, Salmonella spp. and Shigella dysenteriae; organisms causing enteric fever and dysentery. In most of the cases, the extracts from respective calli showed comparable, and in some cases better, result in comparison to the extracts from parent leaves. To the best of our knowledge this is the first preliminary report on antibacterial potential, especially through calli extracts, of these plants; and in vitro cultivation of the explants may be used to obtain phytotherapeutic compounds.

Optimization of Experimental Conditions for the Chitosan Antibacterial Activity Test against Staphylococcus aureus (포도상구균에 대한 키토산의 항균성 측정을 위한 실험조건의 적정화)

  • 한영숙
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.3
    • /
    • pp.145-158
    • /
    • 2004
  • Experimental conditions for evaluating chitosan antibacterial activities were established. The chitosan antibacterial activities were measured against the Staphylococcus aureus and evaluated for their application to antibacterial textile finishing. The strain of Staphylococcus aureus used in this experiments was KCTC 1916. The chitosan antibacterial activities were estimated from the bacterial densities or %reduction of bacteria in chitosan solutions and bacterial culture mixtures after incubation under specific conditions. Six parameters as follows were evaluated to optimize the experimental conditions for measuring antibacterial activities. The different combinations of mixtures according to the different ratios of chitosan solutions to the bacterial cultures showed different antibacterial activities. However, the chitosan antibacterial activities could be evaluated by comparing the data obtained from the same combinations of mixtures. The solvent influence on the chitosan solution antibacterial activities could be eliminated using control solution containing the same concentration of acetic acid. The initial pH of the chitosan -bacterial mixtures also affected the chitosan antibacterial activity; at a higher pH, higher activity in terms of %reduction of bacteria was observed. In case of the bacterial solution without either the acetic acid or chitosan, the initial pH of the solution did not significantly affect bacterial growth. The % reduction of bacteria increased when contact times of bacteria with chitosan in the chitosan -bacterial mixture were expended upto 24 hours. However, the chitosan antibacterial activities could be successfully evaluated at contact time 0 where the chitosan-bacterial mixture was plated immediately after mixing and incubated to measure the bacterial number to 24 hours. Evaluating %reduction of bacteria in the test mixtures after incubation were not changed when the inoculated bacterial concentrations were 2.3${\times}$10$\^$0/ml to 2.3${\times}$10$\^$6/ml. The optimal range of incubation time of the petri-Dish after plating the chitosan-bacterial mixture was 24 to 72 hours depending on the antibacterial activities of the test solutions.

Rapid Preparation of Dongchimi-Juice for Naengmyon by Lactic Acid Bacteria Having High Antibacterial Activity (항균활성이 높은 젖산균에 의한 냉면용 동치미액의 속성제조)

  • 박상희
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 1999
  • The purpose of this study is to establish a rapid preparation method of Dongchimi-juice having favor-able flavor and high antibacterial activity against undesirable bacteria in Naengmyon-broth by using high antibacterial strains of lactic acid bacteria Lactobacillus homohiochii B21 and leuconostoc mesenteroid-es subsp. mesenteroides C16 as Dongchimi starter. When the two strains of lactic acid bacteria were used as starter mixed culture was better than single culture in acid production and antibacterial activity. When starter was not inoculated in Dongchimi fermentation the numbers of Gram negatives and colifor-ms were remarkably increased in early phase and antibacterial activity could scarcely be detected. But when starter was inoculated the numbers of Gram negatives and coliforms were sharply decreased from early phase and antibacterial ctivity was high. When Dongchimi was made with heat sterilized mat-erials and starter there were no Gram negatives and coliforms and antibacterial activity was high. The antibacterial activity of starter inoculated Dongchimi was maximum in 2 days of fermentation at 2$0^{\circ}C$ and was scarcely detected in six days. In consideration of coliform counts antibacterial activity and the flavor of Dongchimi the preparation method in which all materials were heat treated at 8$0^{\circ}C$ for 15 min-utes and inoculated with mixed starter of the two strains and fermented for 2 days at 2$0^{\circ}C$ was thoug-ht to be good.

  • PDF

Antibacterial Characteristics of PVA/PAA Hydrogel Film using Cefotaxime (Cefotaxime을 이용한 PVA/PAA 하이드로 겔 필름의 항균 특성)

  • Yeom, SeokJae;Jung, Sundo;Oh, Eunha
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • Objectives: Cefotaxime is an antibiotic used to treat several bacterial infections. Specifically, it is used to treat pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, and sepsis. It is given by injection into either a vein or muscle. Antibacterial polymers prepared by chemical bonding and simple blending of antibacterials into polymers has attracted much interest because of their long-lasting antibacterial activity. This study attempted to review the possibility of hydrogel films as functional antibacterial materials by antimicrobial activity. Methods: In this study, CTX-PAA was synthesized by the chemical reaction of polyacrylic acid with cefotaxime by N,N'-Dicyclohexylcarbodiimide (DCC) method. Synthetic antibacterial hydrogel films were then prepared with PVA and CTX-PAA for functional application. Results: The increase in the cefotaxime content of the hydrogel films showed a similar decrease in tensile strength and elongation. The values of films impregnated with chemically bonded cefotaxime showed no significant difference. Antibacterial susceptibility was determined against Streptococcus pneumoniae and Escherichia coli using a standardized disc test. Conclusion: The synthetic antibacterial hydrogel films exhibited broad susceptibility against Streptococcus pneumoniae and Escherichia coli. Notably, the antibacterial effect of antibacterial hydrogel films against Grampositive (Streptococcus pneumoniae) was superior to that against Gram-negative (Escherichia coli).