DOI QR코드

DOI QR Code

Isolation, Characterization, and Metabolic Profiling of Ceratorhiza hydrophila from the Aquatic Plant Myriophyllum spicatum

  • Elsaba, Yasmin M. (Botany and Microbiology Department, Faculty of Science, Helwan University) ;
  • Boroujerdi, Arezue (Chemistry Department, Claflin University) ;
  • Abdelsalam, Asmaa (Botany and Microbiology Department, Faculty of Science, Helwan University)
  • Received : 2021.06.21
  • Accepted : 2022.03.26
  • Published : 2022.04.30

Abstract

The goal of the present study was to investigate the antibacterial properties, enzyme production, and metabolic profiling of a new Ceratorhiza hydrophila strain isolated from the submerged aquatic plant Myriophyllum spicatum. Furthermore, the fungus' morphological characterization and DNA sequencing have been described. The fungus has been identified and submitted to the GenBank as Ceratorhiza hydrophila isolate EG19 and the fungus ID is MK387081. The enzyme analyses showed its ability to produce protease and cellulase enzymes. According to the CSLI standard, the ethyl acetate extract of C. hydrophila showed intermediate antibacterial activity against Streptococcus pneumonia, Micrococcus luteus, and Staphylococcus aureus. Metabolic profiling has been carried out using 700 MHz NMR spectroscopy. Based on the 1H and 1H-13C heteronuclear single quantum coherence (HSQC) NMR data and NMR databases, 23 compounds have been identified. The identified metabolites include 31% amino acids, 9% sugars, 9% amines, 4% sugar alcohols, and 4% alkaloids. This is the first report for the metabolic characterization of C. hydrophila, which gave preliminary information about the fungus. It is expected that our findings not only will pave the way to other perspectives in enormous applications using C. hydrophila as a new promising source of antimicrobial agents and essential metabolites, but also it will be valuable in the classification and chemotaxonomy of the species.

Keywords

Acknowledgement

The authors are very grateful to SC-INBRE (2 P20 GM103499) and NSF HBCU-UP (HRD-1332516) for providing NMR facilities. The authors are also grateful to Prof. Dr Tarek Galal, Professor of Plant Taxonomy, Botany and Microbiology Dept. Helwan University for helping in authenticating the plant material.

References

  1. Harvey JL, Varley DR. Evaluation of european pathogens for the control of Myriophyllum spicatum in the United States of america. Proceedings of the IX International Symposium on Biological Control of Weeds. Moran VC, Hoffmann H. 1st edn. Stellenbosch, South Africa: University of Cape Town; 1996.
  2. Fayed AA. The distribution of Myriophyllum spicatum L. in the inland waters of Egypt. Folia Geobot Phytotax. 1985;20(2):197-199. https://doi.org/10.1007/BF02856089
  3. Ascherson P, Schweinfurth G. Illustration de la flore d'Egypt. Mem. Inst Egypt. 1889;2:2.
  4. Abd El-Ghani M, El-Fiky AM, Soliman A, et al. Environmental relationships of aquatic vegetation in the fresh water ecosystem of the nile Delta, Egypt. Afr J Ecol. 2011;49(1):103-118. https://doi.org/10.1111/j.1365-2028.2010.01237.x
  5. Galal TM, Shehata HS. Evaluation of the invasive macrophyte Myriophyllum spicatum L. as a bioaccumulator for heavy metals in some water courses of Egypt. Ecol Indic. 2014;41:209-214. https://doi.org/10.1016/j.ecolind.2014.02.004
  6. Farr DF, Rossman AY, Palm ME, et al. Fungal databases. Systematic botany and mycology laboratory, ARS, USDA; 2008. Available from: http://nt.ars-grin.gov.
  7. Zhong QY, Song S, Yang MX, et al. First report of Sclerotium hydrophilum causing stem rot of rice in North East China. Plant Dis. 2018;102(3):681-681. https://doi.org/10.1094/PDIS-07-17-1013-PDN
  8. Aye SS, Myint YY, Lwin T, et al. Stem rot of rice caused by Sclerotium hydrophilum isolated in Myanmar. Plant Pathol. 2009;58(4):799-799.
  9. Lanoiselet VM, Cother EJ, Ash GJ, et al. First report of Sclerotium hydrophilum on leaf sheath of rice (Oryza sativa) in South-Eastern Australia. Plant Pathol. 2002;51(6):813-813. https://doi.org/10.1046/j.1365-3059.2002.00783.x
  10. Hausner G, Reid J. Factors influencing the production of sclerotia in the wild rice (Zizania aquatica) pathogen Sclerotium hydrophilum. Mycoscience. 1999;40(5):393-400. https://doi.org/10.1007/BF02464393
  11. Punter D, Reid J, Hopkin AA. Notes on sclerotium-forming fungi from Zizania aquatica (wild-rice) and other hosts. Mycologia. 1984;76(4): 722-732. https://doi.org/10.2307/3793230
  12. Qu SH. Rice diseases. Kew, England: Commonwealth Mycological Institute; 1972.
  13. Bowerman L, Goos RD. Physiological studies of two fungi isolated from Nymphaea odorata. Mycologia. 1991;83(5):624-632. https://doi.org/10.2307/3760217
  14. Harvey JL, Evan HV. Assessment of fungal pathogens as biocontrol agents of Myriophyllum spicatum. Waterways experiment station, Vicksburg, MS. Miscellaneous Paper; 1997. A-97-1.
  15. Xu Z, Harrington TC, Gleason ML, et al. Phylogenetic placement of plant pathogenic Sclerotium species among teleomorph genera. Mycologia. 2010;102(2):337-346. https://doi.org/10.3852/08-189
  16. Aliferis KA, Jabaji SH, Nmr G-MS. Metabolic fingerprinting of developmental stages of Rhizoctonia solani sclerotia. Metabolomics. 2010;6(1):96-108. https://doi.org/10.1007/s11306-009-0180-4
  17. Cappellini R, Peterson J. Production, in vitro, of certain pectolytic and cellulolytic enzymes by fungi associated with corn stalk rot. Bull Torrey Botanical Club. 1966;93(1):52-55. https://doi.org/10.2307/2483885
  18. Toma FM, Abdulla NQF. Isolation and identification of fungi from spices and medicinal plants. RJEES. 2013;5(3):131-138. https://doi.org/10.19026/rjees.5.5648
  19. Waksman SA. The genus Streptomyces. In: Sebek OK, editor. The actinomycetes. A summary of current knowledge. New York: The Ronald Press Co.; 1967. Chapter 9, p. 101-112.
  20. da Silva N, Taniwaki M, Junqueira V, et al. Microbiological examination methods of food and water: a laboratory manual. London: Taylor and Francis Group; 2013.
  21. Zouari-Mechichi H, Mechichi T, Dhouib A, et al. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb Technol. 2006;39(1):141-148. https://doi.org/10.1016/j.enzmictec.2005.11.027
  22. Prabha TR, Revathi K, Vinod MS, et al. A simple method for total genomic DNA extraction from water moulds. Curr Sci. 2013;104(3):10.
  23. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. San Diego, CA: Academic Press; 1990.
  24. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696-704. https://doi.org/10.1080/10635150390235520
  25. Guindon S, Dufayard JF, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307-321. https://doi.org/10.1093/sysbio/syq010
  26. Ammar MS, Louboudy SS, Abdul-Raouf UM. Distribution, total viable bacteria and identification of the most potent proteolytic bacterial strains isolated from Aswan city. Al-Azhar J Microbiol. 1991; 11:224-238.
  27. Cowan ST. Cowan and steel's manual for the identification of medical bacteria. 2nd edn. England: Cambridge University Press; 1974. p. 193-227.
  28. Gulati R, Saxena RK, Gupta R. A rapid plate assay for screening L-asparaginase producing microorganisms. Lett Appl Microbiol. 1997;24(1):23-26. https://doi.org/10.1046/j.1472-765X.1997.00331.x
  29. Kasana RC, Salwan R, Dhar H, et al. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr Microbiol. 2008;57(5):503-507. https://doi.org/10.1007/s00284-008-9276-8
  30. Gessner RV. Degradative enzyme production by salt march fungi. Botanica Marina. 1980;23(2): 133-139. https://doi.org/10.1515/botm.1980.23.2.133
  31. Kjer J, Debbab A, Aly AH, et al. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc. 2010;5(3):479-490. https://doi.org/10.1038/nprot.2009.233
  32. Balakumar R, Sivaprakasam E, Kavitha D, et al. Antibacterial and antifungal activity of fruit bodies of Phellinus mushroom extract. Int J Biosci. 2011; 1:72-77.
  33. CLSI. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd edn. CLSI guideline M45. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
  34. CLSI. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. 29th edn. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.
  35. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911-917. https://doi.org/10.1139/o59-099
  36. Wu H, Southam AD, Hines A, et al. High-throughput tissue extraction protocol for NMR-and MS-based metabolomics. Anal Biochem. 2008; 372(2):204-212. https://doi.org/10.1016/j.ab.2007.10.002
  37. Kim HK, Choi YH, Verpoorte R. NMR-based metabolomic analysis of plants. Nat Protoc. 2010; 5(3):536-549. https://doi.org/10.1038/nprot.2009.237
  38. Abdelsalam A, Mahran E, Chowdhury K, et al. NMR-based metabolomic analysis of wild, greenhouse, and in vitro regenerated shoots of Cymbopogon schoenanthus subsp. proximus with GC-MS assessment of proximadiol. Physiol Mol Biol Plants. 2017;23(2):369-383. https://doi.org/10.1007/s12298-017-0432-0
  39. Gvozdeva EL, Volotskaya AV, Sof'in AV, et al. Interaction of proteinases secreted by the fungal plant pathogen Rhizoctonia solani with natural proteinase inhibitors produced by plants. Appl Biochem Microbiol. 2006;42(5):502-507. https://doi.org/10.1134/S0003683806050103
  40. Robledo-Mahon T, Calvo C, Aranda E. Enzymatic potential of bacteria and fungi isolates from the sewage sludge composting process. Appl Sci. 2020; 10(21):7763. https://doi.org/10.3390/app10217763
  41. Osman ME, Khattab OH, Elsaba YM. Aspergillus terreus proteases: characterization and applications. J Chem Biol Phys Sci. 2014;4(3):2333-2346.
  42. Bialas A, Kafarski P. Proteases as anti-Cancer targets-molecular and biological basis for development of inhibitor-like drugs against cancer. Anticancer Agents Med Chem. 2009;9(7):728-762. https://doi.org/10.2174/187152009789056877
  43. Lasekan A, Bakar FA, Hashim D. Potential of chicken by-products as sources of useful biological resources. Waste Manag. 2013;33(3):552-565. https://doi.org/10.1016/j.wasman.2012.08.001
  44. Sharada R, Venkateswarlu G, Venkateswar S, et al. Applications of cellulases: review. Int J Pharm Chem Biol Sci. 2014;4:424-437.
  45. da Silva IF, da Luz JMR, Oliveira SF, et al. High - yield cellulase and LiP production after SSF of agricultural wastes by Pleurotus ostreatus using different surfactants. Biocatal Agric Biotechnol. 2019; 22:101428. https://doi.org/10.1016/j.bcab.2019.101428
  46. Ahmad Y, Hameed A, Ghaffar A. Enzymatic activity of fungal pathogens in corn. Pak J Bot. 2006; 38(4):1305-1316.
  47. Bhattacharyya C, De S, Basak A, et al. Antimicrobial activities of some basidiomycetous fungi. J Mycopathol Res. 2006;44:129-135.
  48. Neeraj B, Elizabeth ABA, Nigel F, et al. Evaluation of antibacterial activity of australian basidiomycetous macrofungi using a high-throughput 96-well plate assay. Pharm Biol. 2011;49(5):492-500. https://doi.org/10.3109/13880209.2010.526616
  49. Emwas AH, Roy R, McKay RT, et al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9(7):123. https://doi.org/10.3390/metabo9070123
  50. Zhang B, Powers R, O'Day EM. Evaluation of Non-Uniform sampling 2D 1H-13C HSQC spectra for semi-quantitative metabolomics. Metabolites. 2020;10(5):203. https://doi.org/10.3390/metabo10050203
  51. Qi S, Ouyang X, Wang L, et al. A pilot metabolic profiling study in serum of patients with chronic kidney disease based on (1) H-NMR-spectroscopy . Clin Transl Sci. 2012;5(5):379-385. https://doi.org/10.1111/j.1752-8062.2012.00437.x
  52. Abdusalam KB, Yee LS, Mediani A, et al. 1H NMR-based metabolomics profiling of Syzygium grande and Oenanthe javanica and relationship between their metabolite compositions and antimicrobial activity against Bacillus species. Rec Nat Prod. 2022;16(2):128-143.
  53. Abdelsalam A, Chowdhury K, Boroujerdi A, et al. Nuclear magnetic resonance characterizes metabolic differences in Cymbopogon schoenanthus subsp. proximus embryogenic and organogenic calli and their regenerated shoots. Plant Cell Tissue Organ Culture. 2021;1:1-7.
  54. del Campo G, Zuriarrain J, Zuriarrain A, et al. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR. Food Chem. 2016;196:1031-1039. https://doi.org/10.1016/j.foodchem.2015.10.036
  55. Dembitsky VM, Terent'ev AO, Levitsky DO. Amino and fatty acids of wild edible mushrooms of the genus Boletus. Rec Nat Prod. 2010;4(4):218.
  56. Du F, Zou Y, Hu Q, et al. Metabolic profiling of Pleurotus tuoliensis during mycelium physiological maturation and exploration on a potential indicator of mycelial maturation. Front Microbiol. 2019; 9:3274. https://doi.org/10.3389/fmicb.2018.03274
  57. Lambou K, Andrea P, Isabel V, et al. Pathway of glycine betaine biosynthesis in Aspergillus fumigatus. Eukaryot Cell. 2013;12(6):853-863. https://doi.org/10.1128/EC.00348-12
  58. Birnie CR, Malamud D, Schnaare RL. Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N, N-dimethylamine oxides with variations in chain length. Antimicrob Agents Chemother. 2000;44(9):2514-2517. https://doi.org/10.1128/AAC.44.9.2514-2517.2000
  59. Do E, Lee HG, Park M, et al. Antifungal mechanism of action of lauryl betaine against skin-associated fungus Malassezia restricta. Mycobiology. 2019;47(2):242-249. https://doi.org/10.1080/12298093.2019.1625175
  60. Zhao G, He F, Wu C, et al. Betaine in inflammation: Mechanistic aspects and applications. Front Immunol. 2018;9:1070. https://doi.org/10.3389/fimmu.2018.01070
  61. Burnett CL, Bergfeld WF, Belsito DV, et al. Safety assessment of alkyl betaines as used in cosmetics. Int J Toxicol. 2018;37(1_suppl):28S-46S. https://doi.org/10.1177/1091581818773354
  62. Miller U, Sowka I, Adamiak W. The effect of betaine on the removal of toluene by biofiltration. SN Appl Sci.2019;;1:984. https://doi.org/10.1007/s42452-019-0832-6
  63. Henke W, Herdel K, Jung K, et al. Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 1997;25(19): 3957-3957. https://doi.org/10.1093/nar/25.19.3957
  64. Nemadodzi LE, Vervoort J, Prinsloo G. NMR-based metabolomic analysis and microbial composition of soil supporting burkea africana growth. Metabolites. 2020;10(10):402. https://doi.org/10.3390/metabo10100402
  65. Avonce N, Mendoza-Vargas A, Morett E, et al. Insights on the evolution of trehalose biosynthesis. BMC Evol Biol. 2006;6(1):109. https://doi.org/10.1186/1471-2148-6-109
  66. Gancedo C, Flores CL. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 2004;4(4-5): 351-359. https://doi.org/10.1016/S1567-1356(03)00222-8
  67. Vicente RL, Spina L, Gomez JP, et al. Trehalose-6-phosphate promotes fermentation and glucose repression in Saccharomyces cerevisiae. Microb Cell. 2018;5(10):444-459. https://doi.org/10.15698/mic2018.10.651
  68. Sato M, Miyagi A, Yoneyama S, et al. CE-MS-based metabolomics reveals the metabolic profile of maitake mushroom (Grifola frondosa) strains with different cultivation characteristics. Biosci Biotechnol Biochem. 2017;81(12):2314-2322. https://doi.org/10.1080/09168451.2017.1387049
  69. Rusinova-Videva S, Kambourova M, Alipieva K, et al. Metabolic profiling of antarctic yeasts by proton nuclear magnetic resonance-based spectroscopy. Biotechnol Biotechnol Equip. 2019;33(1): 12-19. https://doi.org/10.1080/13102818.2018.1490201
  70. Rai M, Varma A. Diversity and biotechnology of ectomycorrhizae. India: Springer Science and Business Media; 2010.
  71. Strittmatter H, Hildbrand S, Pollak P. Malonic acid and derivatives. Ullmann's Encyclopedia Ind Chem. 2012;22:157-174.
  72. Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective actions of dietary choline. Nutrients. 2017;9(8):815. https://doi.org/10.3390/nu9080815
  73. Persson CGA, Pauwels R. Pharmacology of antiasthma xanthines. In: Page CP, Barnes PJ, editors. Handbook of experimental pharmacology. Berlin: Springer Verlag; 1991. p. 207-225.
  74. Singh N, Shreshtha AK, Thakur MS, et al. Xanthine scaffold: Scope and potential in drug development. Heliyon. 2018;4(10):e00829. https://doi.org/10.1016/j.heliyon.2018.e00829