• Title/Summary/Keyword: Anisotropic index

Search Result 47, Processing Time 0.032 seconds

Assessment of cerchar abrasivity test in anisotropic rocks

  • Erarslan, Nazife
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.527-534
    • /
    • 2019
  • There have been developed a number of methods to assess the abrasivity of rock materials with the increased use of mechanized rock excavation. These methods range from determination of abrasive and hard mineral content using petrographic thin section analysis to weight loss or development of wear flat on a specified cutting tool. The Cerchar abrasivity index (CAI) test has been widely accepted for the assessment of rock abrasiveness. This test has been considered to provide a reliable indication of rock abrasiveness for isotropic rocks. However, a great amount of rocks in nature are anisotropic. Hence, viability assessment of Cerchar abrasivity test for the anisotropic rocks is investigated in this research. The relationship between CAI value and quartz content for the isotropic rocks is well known in literature. However, a correlation between EQ, F-Schimazek value, Rock Abrasivity Index (RAI) and CAI of anisotropic rocks such as phyllite was done first time in literature with this research. The results obtained with this research show F-Schimazek values and RAI values should be considered when determination of the abrasivity of anisotropic rocks instead of just using Cerchar scratch test.

Seepage Face and Reliability Indexes of Anisotropic Homogenous Dam at Steady State Condition (비등방 균질 댐의 정상상태에서의 침투면과 신뢰성지수)

  • Mahmood, Khalid;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.35-42
    • /
    • 2012
  • This paper evaluates the effect of anisotropic conductivity on the seepage face and reliability index of an homogeneous dam with and without toe drain. The analysis are conducted under steady state saturated-unsaturated seepage condition using finite element method. Various anisotropic conductivity ratios were interpreted under such conditions as the vertical conductivity is reduced while the horizon conductivity is fixed. The shear strength of soil is defined by the modified Mohr-Coulomb failure criterion. The analysis results demonstrate that the length of seepage face and reliability index at the downstream and upstream of the dam increase with an increasing anisotropic ratio. These results of the seepage face and reliability index, however, depend on the total head difference between the upstream slope and downstream toe. The difference in seepage face and reliability index is attributed to the different equipotential head with different anisotropic ratios of the dam material.

Multiple light diffraction theory in volume gratings using perturbative integral expansion method

  • Jin, Sang-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.67-73
    • /
    • 1997
  • Light wave diffraction from multiple superposed volume gratings is inestigated using a perturbative iteration method of the integral equation of Maxwell's wave equation. The host material and index gratings are anisotropic and non-coplanar multiple volume gratings are considered. In this method, the paraxial approximation and lack of backward scattering in conventional coupled mode theory are not assumed. Systematic analysis of anisotropic wave diffraction due to multiple noncoplanar volume index gratings is performed in increasing level of diffraction orders corresponding to successive iterations.

Magnetic Turbulence Associated with Magnetic Dipolarizations in the Near-Tail of the Earth's Magnetosphere: Test of Anisotropy

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Kim, Kyung-Chan;Kim, Hyun-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2011
  • In this paper, the anisotropic nature of the magnetic turbulence associated with magnetic dipolarizations in the Earth's plasma sheet is examined. Specifically, we determine the power spectral indices for the perpendicular and parallel components of the fluctuating magnetic field with respect to the background magnetic field, and compare them in order to identify possible anisotropic features. For this study, we identify a total of 47 dipolarization events in February 2008 using the magnetic field data observed by the THEMIS A, D and E satellites when they are situated near the neutral sheet in the near-Earth tail. For the identified events, we estimate the spectral indices for the frequency range from 1.3 mHz to 42 mHz. The results show that the degree of anisotropy, as defined by the ratio of the spectral index of the perpendicular components to that of the parallel component, can range from ~0.2 to ~2.6, and there are more events associated with the ratio greater than unity (i.e., the perpendicular index being greater than the parallel index) than those which are anisotropic in the opposite sense. This implies that the dipolarization-associated turbulence of the magnetic field is often anisotropic, to some non-negligible degree. We then discuss how this result differs from what the theory of homogeneous, anisotropic, magnetohydrodynamic turbulence would predict.

A numerical study on anisotropic strength of a rock containing fractures under uniaxial compression condition

  • Ohk Jin-Wook;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.150-155
    • /
    • 2003
  • Fractures in the form of micro cracks are commonly found in natural rocks. A rock behaves in a complex way due to fracture; in particular, the anisotropic strength of a rock material is significantly influenced by the presence of these fractures. Therefore, it is essential to understand the failure mechanism of a fractured rock. In this study, a fractured rock is formulated in terms of fabric tensor based on geometric and mechanical simplifications. In this way, position, density and shape of fractures can be determined by the fabric tensor so that rocks containing multi-fractures can successfully be modeled. Also an index to evaluate the degree of anisotropy of a fractured rock is proposed. Hence, anisotropic strength of a rock containing fractures under uniaxial compression condition is estimated through a series of numerical analyses for the multi-fractured model. Numerical investigations are carried out by varying the fracture angle from $0^{\circ}\;to\;90^{\circ}$ and relationship between uniaxial compression strength and the degree of anisotropy is investigated. By comparing anisotropic strength of numerical analysis with analytic solution, this study attempts to understand the failure mechanism of rock containing fractures.

  • PDF

Measurement of Effective Refractive Index of Anodic Aluminum Oxide Using a Prism Coupler

  • Gong, Su-Hyun;Cho, Y.H.;Stolz, Arnaud;Gokarna, Anisha;Dogheche, Elhadj;Ryu, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.195-195
    • /
    • 2010
  • In recent years, Anodic aluminum oxide(AAO) has become popular and attractive materials. It can be easily fabricated and self-organized pore structures. It has been widely used as a biosensor membrane, photonic crystal for optical circuit and template for nanotube growth etc. In previous papers, the theory was developed that AAO shows anisotropic optical properties, since it has anisotropic structure with numerous cylindrical pores. It gives rise to the anisotropy of the refractive index called as birefringence. It can be used as conventional polarizing elements with high efficiency and low cost. Therefore, we would like to compare the theory and experimental results in this study. One method which can measure effective refractive index of thin film is the prism coupling technique. It can give accurate results fast and simply. Furthermore, we can also measure separately the refractive index with different polarization using polarization of the laser (TE mode and TM mode). We calculated the effective refractive index with effective medium approximations (EMAs) by pore size in the SEM image. EMAs are physical models that describe the macroscopic system as the homogeneous and typical method of all mean field theories.

  • PDF

The Point Load Index of the Daegu Shale and its Relation to the Uniaxial Compressive Strength (대구지역 셰일의 점재하지수 특성 및 일축압축강도와의 상관성)

  • Lee, Younghuy;Youn, Chanho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.37-45
    • /
    • 2009
  • The experimental study was carried out to evaluate the characteristics of the point load index and the uniaxial compressive strength of inherently anisotropic shale in the laboratory. In the testing program the effects of size and the shape on the point load index were investigated both in the axial and diametral direction. In general, the point load index of the shale was constant when the length/diameter (L/D) ratio of the specimen is greater than 1.0 in the diametral direction. The point load index in axial direction shows slight decrease as the L/D ratio is increased and the corner breakage was observed when L/D ratio is greater than unity. The minimum point load index was observed in the bedding angle of $\beta=15^{\circ}{\sim}30^{\circ}$ in the axial point load tests and of $\beta=30^{\circ}$ in the uniaxial compression tests. The relationship between the point load index and the uniaxial compressive strength was linear to ${\sigma}_c=25.0 I_{s(50)}$ for the specimen with the bedding plane angle, $\beta$ at the range of $0^{\circ}{\sim}90^{\circ}$. On the other hand, this relationship was appeared linear to ${\sigma}_c=14.4 I_{s(50)}$ when the bedding angle, $\beta$ is fixed to 90${^{\circ}}$ and this correlation is much different from ${\sigma}c=22 I_{s(50)}, which is generally applied to the rock specimen with no bedding plane in ISRM (1985). The anisotropic strength with different $\beta$ angle shows the shoulder type and this can be suitably modelled by the corrected Ramamurthy'(1993)s equation with the index value of 'n' equal to 3.0.

  • PDF

Characteristics of Physical Properties of Rocks and Their Mutual Relations (암석의 종류와 방향에 따른 물리적 특성과 상호관계)

  • 원연호;강추원;김종인;박현식
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • The main objectives of this study are to investigate the anisotropic characteristics of rocks and to evaluate the relationships between physical properties. A series of experiments were performed in three mutually perpendicular directions for three rock types, which are granite, granitic gneiss and limestone. The relationships of measured physical properties were evaluated. The results of ultrasonic wave velocity measurement show that granite of three rock types gives the largest directional difference, and that the wave velocity in a plane parallel to a transversely isotropic one is dominantly faster than that in a subvertical or vertical plane. It implies that ultrasonic wave velocity for rock could be used as a useful tool for estimating the degree of anisotropy. The ratio of uniaxial compressive strength to Brazilian tensile strength ranges approximately from 13 to 16 for granite. from 8 to 9 for granite gneiss, and from 9 to 18 for limestone. The directional differences for granite and granitic gneiss are very small, and on the other hand, is relatively large for limestone. It is suggested that strength of rock makes quite difference depending on the rock types and loading directions, especially for the anisotropic rocks such as transversely isotropic or orthotropic rocks. The ratio of uniaxial compressive strength to point load strength index ranges from 18 to 20 for granite, from 17 to 19 for granitic gneiss, and from 21 to 24 for limestone. These results show that point load strength index makes also a difference depending on rock types and directions. Therefore. it should be noted that the ratio of uniaxial compressive strength to point load strength index could be applied to all rock types. Uniaxial compressive strength shows relatively good relationship with point load strength index, Schmidt hammer rebound value, and tensile strength. In particulat, point load strength index is shown to be the best comparative relationship. It is indicated that point load test is the most useful tool to estimate an uniaxial compressive strength indirectly.

Derivation of Approximate Equations for $LiNbO_3$ Electroiptic Effects and Its Error Evaluation ($LiNbO_3$ 전기광학효과의 근사식 도출 및 오차 검토)

  • 김영문;김창민
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.77-84
    • /
    • 1997
  • The refractive index changes due to the electroptic effect are discussed when external electric fields $E_x, E_y, E_2$ are applied on $LiNbO_3$, a typical anisotropic material. Derived are approximate equations for principal axis' rotations and index changes, results of which are compared with exact results by te computer simulations. In each useful application of $LiNbO_3$substrate, the results of the approximate equations are confirmed to agree with exact solutions.

  • PDF