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Multiple light diffraction theory in volume gratings
using perturbative integral expansion method
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Light wave diffraction from multiple superposed volume gratings is investigated using a pertur-
bative iteration method of the integral equation of Maxwell’s wave equation. The host material and
index gratings are anisotropic and non-coplanar multiple volume gratings are considered. In this
method, the paraxial approximation and lack of backward scattering in conventional coupled mode
theory are not assumed. Systematic analysis of anisotropic wave diffraction due to multiple non-
coplanar volume index gratings is performed in increasing level of diffraction orders corresponding

to successive iterations.

I. INTRODUCTION

Light diffraction from superposed volume index grat-
ings has been investigated extensively theoretically and
experimentally[1-5] Various applications of the theory
were considered in understanding and designing new
optical devices using volume gratings. Holographic op-
tical devices utilizing volume gratings are among the
most, important applications[6-11]. Usually the analy-
sis concentrated on the diffraction efficiency of a single
volume grating and cross-talk caused by simultaneous
interaction of light and multiple gratings. Theoreti-
cal study was largely based on two methods. The first
one is the coupled mode analysis[1-3]. Perturbative ex-
pansion of the integral representation of the Maxwell’s
wave equation is the second method[4,5]. Rigorous
coupled mode theory has been applied to the case of
a small number of superposed gratings, typically two,
due to the complicated procedure of solving coupled
algebraic equations. However, the number of grat-
ings increases rapidly when holographic data storage
and volume holographic interconnections are consid-
ered. In this case, rigorous coupled mode theory is not
adequate to study the cross-talk arising from interac-
tions of light with millions of volume gratings.

Recently, a technique using an iteration method of
the integral equation of Maxwell’s wave equation was
introduced to study the cross-talk effects in the case
of a large number of gratings[4,5]. In this technique
it is not necessary to solve the complicated algebraic
equations. The final results are described as a product
of simple analytical expressions. It has been shown
that the technique is simple and systematic enough
to handle a large number of gratings. However, this
analysis has the following limitations. The analysis

was limited to the case of isotropic host materials and
transverse optical polarization. Furthermore, the wave
vectors of the incident light and volume index gratings
were assumed to be in the same plane. These two
assumptions eliminated the possibility of polarization
mixing, and graddivE term in the Maxwell’s wave equa-
tion automatically disappeared. In a real situation,
incident light waves propagate in many different direc-
tions. Volume index gratings also have different wave
vectors and they are not in the same plane. Therefore,
polarization mixing of the light waves should be con-
sidered to obtain correct results on cross-talk effects.

In this paper, we use a rigorous method of perturba-
tive integral expansion to study light diffraction from
superposed volume gratings. This method can be ap-
plied to an arbitrary interaction geometry of optical
waves and volume index gratings. It also accounts for
backward as well as forward diffraction simultaneously.
In section 1I, a general formula of perturbative integral
expansion is introduced. In section III, the meaning
of the Fourier decomposition of the Green’s function
in solving the integral equation of the Maxwell’s wave
equations is explained. The formulae for first and sec-
ond level diffraction are derived in section IV. The gen-
eral formula for high level diffraction is presented in
section V. Finally, conclusions are described.

II. PERTURBATIVE INTEGRAL EXPANSION

The interaction geometry between light waves and
volume gratings is shown in Fig. 1. It consists of an
infinite slab bounded by z = 0 and z = d. To sim-
plify the analysis, we eliminate complicated bound-
ary reflection at z = 0 and z = d by assuming that
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FIG. 1. Interaction geometry of a volume grating. Vari-
ous diffraction orders are shown.

the average value of the slab permittivity is equal to
the exterior permittivity. Anisotropic host materials
and anisotropic volume index gratings are considered
in general. The assumption about boundary effects is
valid if anti-reflection coatings are used at z = 0 and
z = d. The macroscopic polarization is given by

P(I‘,t) = onE(T,t) —l—EO’*/(I‘)E(I‘,t), (21)

where £¢ is the permittivity of the vacuum, x is the
susceptibility tensor of the anisotropic host material.
v(r) is a second rank tensor describing the perturba-
tion caused by anisotropic volume gratings and thus it
is zero outside the slab. Maxwell’s wave equation for
monochromatic light waves with frequency w in MKS
units reads

(v? — graddiv + k3e)E = —k3~E, (2.2)

where e =1+ y and kg = w/c . We assumed that the
material is non magnetic and there is no free charge.
In Eq.(2.2), the left side describes free waves with fre-
quency w in an anisotropic host material having dielec-
tric tensor ¢ . Defining a Green’s function for Eq.(2.2)
as

(7% — graddiv 4 kie)g(r,v') = —16(r —1'), (2.3)

where I is a unit matrix and g is a second rank tensor.
Then, the integral representation of Eq.(2.2) is given
by [4]

E(r) = Egexpltk - ] + kg/dr’g(r,r’)'y(r’)E(r'), (2.4)

where r’ denotes the secondary source position vector
which ranges over all the points inside the slab. The
homogeneous solution is taken as a plane incident wave

Einc(r,t) = Egexpli(k - r — wt)], (2.5)

Fourier integral representation G(q) of the Green’s
function in Eq.(2.3) is defined by

o) = ~(5-) [ daG(a)explia- (1) (26)

Fourier integral form of é(r —r') is given by

3
Sr=x)=~(5) [daexplia-r—x).  (27)

Then, G(¢) can be described as a matrix form that
satisfies

3
D (@ —lal*dy; + kei)Gik(a) = Sux. (2.8)
=1

The solution of Eq.(2.8) is represented by
Gi;j(q) = Adi;(q)/D(q), (2.9)

where D(q) and Ad;;(q) are determinant and adjoint
matrix respectively. In Cartesian coordinates, each of
the nine components in the Ad;;(q) is a polynomial
in q;,q, and ¢. . Because of the exponential term
under the integral sign of Eq.(2.6), the ¢;,¢, and g,
which appear in the polynomials can be conveniently
replaced by differential operators —i8/8x, —id/dy and
—10/0z respectively, when the adjoint matrix is taken
out from the integral. Hence, Eq.(2.6) can be rewritten
in the following form

glr,v') = —(;\:;3 {/dqe—xW}. (2.10)

The operator M’ operates on r. If we iterate
Eq.(2.4), we obtain the perturbative integral expan-
sion

o0

E(r) = Y E®™(r), (2.11)

n=0

where E(©) is the incident plane wave, and the n-th
level amplitude becomes

E() = 43" [ drag(r,ra)2(ra) -
/drlg(rg,rl)v(rl)Eo explik - r1). (2.12)

The diffracted light amplitude is obtained in increas-
ing level of iterations by calculating Eq.(2.12).

III. POLES IN THE GREEN’S FUNCTION

It is well known that the equation D(q) = 0 describes
two wave normal surface[12]. For a given propagation
direction s , it provides two indices of refraction and
the corresponding eigenmode polarization. However,
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FIG. 2. Wave normal surfaces in the x - z plane of a
uniaxial crystal and phase mismatch of the diffracted wave
due to grating K.

as will be shown in the following sections, in our theory
g- and g, are real independent parameters which can
have any values. What we need in the following is
factorization of D(q) with respect to g, for given values
of g; and gy . It is well known that D(q) is a polynomial
of order four in ¢, for real symmetric dielectric tensor
¢ . Thus, D(q) can be factorized fully into a product
of four linear terms.

To illustrate the physical meaning of the poles of
G(q), we consider a uniaxial crystal with its optic axis
coincident with the z-axis. In the uniaxial crystal,
physical properties are the same as the crystal rotates
around the optic axis. The wave normal surfaces in the
x-z plane are shown in Fig. 2. Now, D(q) and Ad;;(q)
in the coordinate system where ¢ is diagonalized are
given by

D(q) = k3[¢? + (¢} + ) — ke
[Ezzqz + 51:17((]3 + q;) - kgexmszz]a (31)

Adyy = qz(ﬁ—kgfzz)Jr(qurQZ - k%szz)(qi — kaezs),

Adiy = ¢:qy(62 + @2 + @) — kjezz),

AdlB = Qarq:(qg + qz + q; - k(%EII)’

Adys = qz(QZ—kSEzzH(qi + qf, - kgezz)(qz_kgng)v

Adas = qy9: (¢ + @ + ¢ — Fdeaz),

Adss = (2 — keaa) (a2 + & + 0@, — kiEza), (3.2)
where Ad is symmetric. We see that that the poles
of Eq.(2.9) with respect to the variable are given by
four zeros of Eq.(3.1). For a positive uniaxial crystal,
i.e., €,; > €25 , the four zeros are all pure imaginary

if (g2 + q2) is larger than kje.., and they represents
non-propagating eigenmodes. If (g2 +¢2) is larger than

kie, and smaller than, or equal to k2e,, , two zeros
are pure imaginary and two zeros are real. The two real
zeros represent extraordinary waves propagating in the
positive and negative z-direction. Finally, if (¢2 + qz)
is smaller than or equal to k3¢, , the four zeros are all
real and they represent forward and backward ordinary
and extraordinary waves. The four poles of Eq.(2.9) for
the uniaxial crystal represent ordinary and extraordi-
nary waves if they are real | and the two poles are in
the upper complex plane and the other two poles are in
the lower part of the complex plane. The poles naving
positive real values are located in the upper complex
plane and those having negative real values are located
in the lower complex plane in the usual way. The four
poles of D{q) given by Eq.(3.1) become real when q is
on the wave normal surface. In particular, two of them
are positive describing eigenmodes propagating in the
positive z-direction. The other two are negative and
they represent eigenmodes propagating in the negative
z-direction. Otherwise, the poles are complex. The
two poles in the upper complex plane are denoted as
u® and u® , and the other two in the lower complex
plane are denoted as u and u? .

IV. MULTIPLE GRATING FORMULATION

In the case of multiplexed volume gratings, the per-
turbation y(r) consists of a sum of sinusoidal refractive
index gratings. Consider N such gratings having wave
vectors K;, i = 1,2,..., N. Then, v(r) may be written
as

2N 2N
¥(r) = aiexpliki-r] = > y(r), (4.1)
1=1 1=1

where «a; is a second rank tensor that represents
the volume grating magnitude. a3, = a,-1 and
Kon = —Kan_1, n=1,2,...N. The n-th level diffrac-
tion light amplitude due to perturbation of Eq.(4.1) is a
sum of (2N)" terms of n-tuple integrals represented by
a sequence of 2N wave vectors K; and —K; . To illus-
trate how to calculate such integrals for various levels,
integration of single and double integrals is carried out
in the following section.

IV. A. Single integral

The integral we have to calculate is of the form

EWD (r)= kg/drlg(r, ri)y(r1)Eoexplik -r1], (4.2)

where we considered one term represented by +; and
K, in Eq.(4.1) for the first-level amplitude. If we use
Eq.(2.10) with D(q) given in section III and Eq.(4.1)
for 1 , the integral in Eq.(4.2) becomes
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ela(r—ri}
ik1f1 ik-l‘l
ae Ege
l {/ D(a) }}1

Eoelq r—ri) .

k /d ! [4 i(k+k1)~r1
= — ry q
(21)° D(q) }

v |
a Eqeila—ko) =) }

dqdr, { 13

// D@ (4.3)

Here, operator M is defined by Ad(q)a; and similarly
for the operator M’ . If we define k; = k + K4 and
change the integral variable to r' = r — r; and replace
D(q) with Eq.(3.1), then

EM(r)= lk”// dqdz'dy'dz’
(27r Y.

Ege! qrfku)r.ei( y*hy)'y.e( q:—k1. )2
. b (44)
[T (g: — v (gz,qy))

B=a

As for the infinite slab material, the integral ranges are
—c <2 <+00,~0c<y <+ooand z-d< 2 < z.
Then the integral with respect to ' and y’ yield delta
functions 2wdé(g, — ki,) and 2wé(q, — k1,) . Hence,
Eq.(4.4) leads to

EM(r
_ r/“ / o Boe R
v:: _UI)
M F— +oC EO et(quklz)z-l
:—————(Qm)gx{e k1 /_;ﬂk d 3 |: 0. — k1.
A JH (g — ul)
1 — eto:—k1)z—d) _ ¢
+ p—— } (4.5)

where 'u*3 = u (klz k1y). There are four poles u‘la ef-
fective in calculating the complex contour integral of
Eq.(4.5). However, the diffracted light wave is in the
region z > d . This implies that the counter should in-
clude the upper half part of the complex plane and only
two poles u¢ and u® are effective. This yields for the
first level diffracted light wave amplitude by Cauchy’s
integral theorem as below

M ... Eg 1—eiid
EV(r) = — —{ekir. =% . _i__
€2z Hl pl
- b
. Es 1-—e¢ir1d
= (4.6)

I1: 5!

Now the operator M operates on the exponential term,
so that Eq.(4.6) can be written as

1 [A(k2)ke P ,
EW(r) = Eo exp(ik¥r)
H1 pi
A kb ip,d
4————( e o expik)|, (A7)
Hl pl
where
KPP = kiod + kg @ + u®z, (4.8)
Pyt =’ — ky, (4.9)
a,b
II = H (i —uf), (4.10)
B+#a,b

AKS®) = Ad(kie, b1y, u?)an, (4.11)

Eq.(4.7) shows that the first-level diffracted light waves
consists of two plane waves. In the following we dis-
cuss the two waves. For the wave vector ky, which is
called a first-level diffraction vector, we have two types
of propagation vectors having the same x and y com-
ponents, ki; and ki, as shown in egs.(4.7) and (4.8).
One is the forward propagation vector k3 representing
an eigenmode, a . The other is forward propagation
vector k2 describing another eigenmode, b. Both k3
and k¥ satisfy D(k;"b) = 0 implying that they repre-
sent homogeneous solutions of the wave equation. In
general, a diffraction wave vector ky does not represent
a homogeneous solution, because k; does not satisfy
Dy b) = 0. The propagation vector derived from a
diffraction vector may be classified into free propaga-
tion vector and evanescent propagation vector. In the
first case, the z-component of the propagation vector
is real. This implies that the wave propagates freely
in the material. In the second case, the z-component
of the propagation vector has an imaginary part. In
this case, the amplitude of the wave decreases exponen-
tially and it represent an evanescent wave. In our case,
the thicknessdof the slab is large and thus evanescent
wave are ignored. We may call pf’b phase-matching
functions because [1—exp(—ip®’d)]/p®® represent sinc
functions with respect to the variables p‘ll’b. They have
maximum absolute valuesd when p‘f’b = 0. This im-
plies that p‘f’b are the same as the phase-matching func-
tions in the conventional coupled mode theory[1].

IV. B. Double integral

The double integral described by v1, K1 and 72, K2,
and represented by a sequence [Kq,K;], is

E®(r) = / drag(r, v2)va(r2)

/drlg(rz, rl)'yl (l‘l)Eo exp['tk . I‘1] (412)
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Following the same procedure used for the single inte-
gral, the integral over ry is the same as Eq.(4.7) except
for replacing r with rz. However, 21 in Eq.(4.12) is in
the interval 0 < z; < d. This implies that z; is pos-
itive and (z; — d) is negative. Thus, the contour for

EMV(r) = — Eoeik‘l’ r 1

1 &
2

[A(k*f) — Alky)e 71
B=a

bé;
[ pf

EZZ

The double integral Eq.(4.12) can be obtained by using
Eq.(4.13), and following the same procedure utilized in

D
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the first term in Eq.(4.5) should enclose the upper half
plane, and the two poles u®" are effective. On the other
hand, for the second term in Eq.(4.5), the lower half
plane should be used and the poles uS'® are effective.
Thus, the integral over ry in Eq.(4.5) becomes

d

; Cipf s
AKS —pizye 1

3
Eqe 1.
8. 3
[ P

&)
[eiP?dA(kl) - (4.13)

B=c
f

obtaining the first-level diffracted light waves.

|
d . - A 1
) (r AKP?)A(ky) 1-exp(—ipld) AKI)AKD) 1 — exp{—i(p 9yd)
)? Z Z P2 1781 B2 B h = (A VR v ﬂz
€::) B2=a B1=a H H Dy Hz H1 1 ( — Py )
‘Eq exp(zk’;2 -r), (4.14)
[
L fHB) =1 for 81 = a,b The various parameters in the above section are gen-
where F1(B1) = exp(—ip?d) for B = c,d (4.15) .eralized .in a straightforward way. Then, the n-tuple
integral is given by[6]
B2 B2 d
5% = U5’ — ko, 4.16 ) .
e Tt e (4.10) E®W(r) = 3 S8 afEoexp(ikde 1), (5.1)
ko = kor T+ kyy §+uh’ 2, (4.17) fo—a
k: =k+K; +Ks. (4.18)
'h Bn _
The general expression for the n-tuple integral repre- where 5y (Ezz Z Z
sented by a diffraction sequence Ky, - Ka, K;] will 3" 10 6n-2=a
be presented in the next section. i 1
n B — 1 ’
=, HB H/ [
V. GENERAL FORMULA FOR HIGHER
DIFFRACTION LEVELS — —
S(ﬂn) - 1 fOI‘ 6n - a'7b (52)
s(Br) = -1 for B, =c,d

In this section we present a general formula for
higher-level diffraction. As in Eq.(4.1), we assume
N sinusoidal perturbations described by wave vec-
tors Kj,2 = 1,2,..., N. Consider n-th level diffracted
light consisting of (2N)" n-tuple integrals. Each n-
tuple integral is uniquely represented by a 2N di-
mensional sequence of wave vectors whose component
can be selected from any one of 2N wave vectors

Kl,—Kl,Kg,—-Kz,....,KN,—KN‘ In the follow-
ing, we adopt the notation that describes the above
2N wave vectors as 1,-1,2,-2,....,N,—N. Then
the sequence of wave vectors representing perturba-
tions above is called a diffraction sequence and we use
bracket [...] to denote it. Consider an n-tuple integral
represented by a sequence[K,, Kn-1, ..., K2, K;i]. The
results in section IV on the single and double integrals
can be extended easily by induction to n-tuple in‘tegral.I

and the phase correlation function & is defined as

o2

A J] Akq)-

q=n-—1

1 — exp(—ipi d)

38
nquq

n—1

TEY AR H Alkn +py"2)
q—1 h=n-1
1 — exp{i(pl~ — py")d}

n-—1

I1

h=1,h#q

_+_

fo(Bq) - (5.3)

ALCARS A (Pg* — Pi")
fq(Bg) for ¢ > 1 in Eq.(5.3) is obtained by using the
following formulas:

h_ﬁ_lA(kh)(Pg —p’,‘ih) -1 pgqh_n_l(A(kh) —p?'é)hl;ll(pﬁ _ pﬁh)
o) = (=) = LT o E FACY
I pﬁ ’ Dy [T Py ")
h=1 h=1h#t for Bq —ab, (5.4)
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t B q—1 8
[1 Akn - p;'2) 1 (pg’ - py")
h:q—] h=1

(-1t

1
1 An)@e -9 1 pbe
fq(ﬁq) = |:

q—-1
1
h=1

where gq(84) = £4(8q) exp(ikg“d) forallqg (5.6)

fi(B) = 1 for 81 = a,b .

{ B = exp(—ip{") for B =c,d (5.7)
2 < 3; Bt

II = Bt:gﬁ_(uj —uf’), (5.8)

i
pj] = Ufj - sz = 'U,?J - (kz + ZKtz)a (59)
t=1
3; ~ P - PN
Ki' = kjaz + kg +uj 2 (5.10)

Eqs.(5.1)-(5.10) are a generalization of the results de-
scribed in section IV. It shows that the diffracted light
waves are sum of four eigenmodes. Two of them prop-
agate in the positive z-direction and represented by the
poles u® and u® . The other two propagate in the neg-
ative z-direction and are represented by the poles u¢
and u? . The amplitude of each eigenmode is a sum
of 471 terms. Each term is characterized by n-1 in-
termediate diffraction process. At each intermediate
step, input waves interact with a perturbation grat-
ing and they generate four plane waves which interact
with the next grating. Four plane waves are generated
at an intermediate step because forward and backward
diffraction stemming from the poles in the upper and
lower complex plane are allowed. For the case of single
and double integrals, it was shown that the wave vec-
tors of the integrals depend only on the overall diffrac-
tion vectors. Eq.(5.1) shows that this is true for arbi-
trary n-tuple integrals. The overall diffraction vector is
uniquely determined by a diffraction sequence. How-
ever, different sequences may have the same overall
diffraction vectors. The overall diffraction vectors can
be always represented by

N

k+ Y nK;, (5.11)
j=1

This implies that any overall diffraction vector is
uniquely represented by an N-dimensional integer vec-
tor (ny,n2,...nn) , where nj, j =1,2,... N, are inte-
gers. We call this vector a diffraction order, and use
parenthesis to denote it. Therefore, light amplitude
having a specific diffraction order can be obtained to
any prescribed accuracy by summing the appropriate
diffraction-level terms using the above equations.

q
Tl

_ipPe
ge(Be)| e e

(P - pit)

h=1h#t
for B, = ¢,d, (5.5)

VI. CONCLUSIONS

The integral expansion method of Maxwell’s equa-
tion was applied to light diffraction from volume index
gratings in anisotropic host materials. The method has
been shown to be powerful in handling a large number
of volume gratings in a systematic and natural way.
The general formula at each iteration level of the in-
tegral equation has been derived. In the appendix, we
verify that the derived general formula should become
the eigenmode that satisfies Maxwell’s wave equations.
Applications and numerical results based on the gen-
eral formula such as cross-talk effects arising from su-
perposed volume gratings for arbitrary light polariza-
tion, interaction geometry, and anisotropy of the host
material will be presented in the next paper.

APPENDIX A: EIGENMODE
IDENTIFICATION

It is important to recognize that the n-tuple
diffracted wave described in Eq.(5.1) should become
the eigenmode that satisfies the Maxwell wave equa-
tions. Hence, we verify that the diffraction of the
electric field vector of n-tuple diffracted wave E(™ in
Eq.(5.1) is equal to the direction of the electric field
eigenvector, which is determined by the wave vector
kf» . From Eq.(2.2)

(V2 -V v+ kie)E™ =0, (A1)
ke, — k2 — k2 kok, k. k.
kok, ke, — k2 — k2 kyks
ko k. ky ks ke, — k2 — k2
Enz
x| Eny | =0, (A2)
Enz

For nontrival solutions to exist, the determinant of the
matrix in Eq.(A.2) must vanish. This leads to a rela-
tion

g, B i
k2 — kZe, k*—kie, K2 —kie,

=1,  (A3)

The direction of the electric field eigenvector can also
be obtained from Eq.(A.2)
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&2
k 2

2 —kies
i | (A4)

2—kéey
k2
k Akois,
Using Eq.(5.1), the n-tuple diffracted wave is given by
E™ « A(kZ")BEg exp(ik?~ - 1), (A5)

where B is a 3 x 3 matrix and A(k8~) = Ad(kS~)a,.
Then

E™ x E, exp(ikf~ . 1), (A6)
(84

where E, = Ad(k?~) | 8 | . (A7)
¥

Ad(kZ") can be obtained from Eq.(3.2) and Eq.(5.10).
Thus,

Bn )2

(u
Zvia - )t

k2, Enok Epeuln
PHla+ SRS 4 Srtny

knok (ufr)?

2 Bn
ZXQ g 4 (1 — Dozl — sy oy Buui

" 2
Xy'{"“,}‘ﬁ a+alp g (1 K k—;“)v}
(A8)
where X = (kg")2 —kies, Y = (kS")Q - kggy’
Z = (k")* — ke

Using Eq.(A.3) and Eq.(A8), the direction of the elec-
tric field vector is given by

kng

. ; a (k5m)2—k2e,
g un® kn

En = < ;(Ia + ;/yﬁ + %7) (knE" )2_k85y
-2

(KE™)2—kZe.

(A9)
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Using Eq.(A.4), the direction of the electric field eigen-
vector determined by the wave vector kf’;"(: kpzT +
kny§ + kn:2) is given by:
kng
(kn™)2—k2e,
k

W;k—?” : (A10)

n

—_—n
(k2 )2 —k3e.

Consequently, the direction of E(™the electric field
vector of is the same as the direction of the electric
field eigenvector determined by the wave vector k&~ .
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