DOI QR코드

DOI QR Code

Seepage Face and Reliability Indexes of Anisotropic Homogenous Dam at Steady State Condition

비등방 균질 댐의 정상상태에서의 침투면과 신뢰성지수

  • Mahmood, Khalid (Dept. of Civil Engineering, Pusan National University) ;
  • Kim, Jin-Man (Dept. of Civil Engineering, Pusan National University)
  • Received : 2011.10.04
  • Accepted : 2012.04.19
  • Published : 2012.04.30

Abstract

This paper evaluates the effect of anisotropic conductivity on the seepage face and reliability index of an homogeneous dam with and without toe drain. The analysis are conducted under steady state saturated-unsaturated seepage condition using finite element method. Various anisotropic conductivity ratios were interpreted under such conditions as the vertical conductivity is reduced while the horizon conductivity is fixed. The shear strength of soil is defined by the modified Mohr-Coulomb failure criterion. The analysis results demonstrate that the length of seepage face and reliability index at the downstream and upstream of the dam increase with an increasing anisotropic ratio. These results of the seepage face and reliability index, however, depend on the total head difference between the upstream slope and downstream toe. The difference in seepage face and reliability index is attributed to the different equipotential head with different anisotropic ratios of the dam material.

균질한 재료로 설계된 댐에서 수직 수평 투수계수가 서로 다를 경우에 이 비등방성 비율이 침투수의 침투면과 신뢰성지수에 어떤 영향을 주는지를 분석하였다. 정상상태에 있는 포화-불포화 침투수 현상을 유한요소법을 사용하여 분석하였다. 수평방향 투수계수를 고정한 상태에서 수직방향 투수계수만을 줄여주는 방법으로 여러가지 다른 비등방성 비율을 해석하였다. 댐제체의 전단강도는 수정된 모어-쿨롱 파괴기준을 사용하여 결정하였다. 해석 결과에 따르면 비등방성 비율이 증가함에 따라 침투면의 거리와 신뢰성지수는 증가하는 것으로 나타났으나 댐 상하류의 전체 수두차에 따라 차이를 보였다. 이러한 침투면과 신뢰성지수의 차이는 비등방성 비율이 변동함에 따라 등가수두선도 변화하는 현상에 의한 것으로 판단된다.

Keywords

References

  1. Bear, J. (1972), Dynamics of Fluids in Porous Media, New York, American Elsevier Pub. Co.
  2. Chen, Q. and Zhang, L. M. (2006), "Three-dimensional analysis of water infiltration into the Gouhou dam using saturated-unsaturated seepage theory", Canadian Geotechnical Journal, Vol.43, pp.449- 461. https://doi.org/10.1139/t06-011
  3. Fredlund, D.G., and Xing, A (1994), "Equations for the soil-water characteristic curve", Canadian Geotechnical Journal, Vol.31, pp. 533 -546. https://doi.org/10.1139/t94-062
  4. Fredlund, D. G., Morgenstern, N. R., and Widger. R. A. (1978), "The shear strength of unsaturated soils", Canadian Geotechnical Journal, Vol.15, pp.313-321. https://doi.org/10.1139/t78-029
  5. Freeze, R. A. and Cherry J. A. (1979), Groundwater, Prentice Hall, NJ.
  6. Knupp, P. (1996), "A moving mesh algorithm for 3D regional ground water flow with water table and seepage face", Adv. Water Resources, Vol.19, No.2, pp.83-95. https://doi.org/10.1016/0309-1708(95)00033-X
  7. Robert, P. Chapuis and Michel Aubertin (2001), "A simplified method to estimate saturated and unsaturated seepage through dikes under steady state conditions", Canadian Geotechnical Journal, Vol.38 (6), pp.1321-1328. https://doi.org/10.1139/t01-068
  8. Robert, P. Chapuis and Denis E. Gill (1989), "Hydraulic anisotropy of homogeneous soils and rocks: Influence of the densification process", Bulletin of Engineering Geology and the Environment, Vol.39(1), pp.75-86. https://doi.org/10.1007/BF02592538