• Title/Summary/Keyword: Almost contact metric structure

Search Result 34, Processing Time 0.024 seconds

ON COMPACT GENERIC SUBMANIFOLDS IN A SASAKIAN SPACE FORM

  • SUNG-BAIK LEE;NAM-GIL KIM;SEUNG-GOOK HAN;IN-YEONG YOO
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.401-409
    • /
    • 1994
  • One of typical submanifolds of a Sasakian manifold is the so-called generic submanifolds which are defined as follows: Let M be a submanifold of a Sasakian manifold M with almost contact metric structure (ø, G, ξ) such that M is tangent to the structure vector ξ. If each normal space is mapped into the tangent space under the action of ø, M is called a generic submanifold of M [2], [8].(omitted)

  • PDF

On characterizations of real hypersurfaces of type B in a complex hyperbolic space

  • Ahn, Seong-Soo;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a comples space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by $(\phi, \zeta, \eta, g)$.

  • PDF

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.

THE STRUCTURE JACOBI OPERATOR ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM

  • KI, U-HANG;KIM, SOO-JIN;LEE, SEONG-BAEK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.337-358
    • /
    • 2005
  • Let M be a real hypersurface with almost contact metric structure $(\phi,\;\xi,\;\eta,\;g)$ in a nonflat complex space form $M_n(c)$. In this paper, we prove that if the structure Jacobi operator $R_\xi$ commutes with both the structure tensor $\phi$ and the Ricc tensor S, then M is a Hopf hypersurface in $M_n(c)$ provided that the mean curvature of M is constant or $g(S\xi,\;\xi)$ is constant.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.

COMMUTING STRUCTURE JACOBI OPERATOR FOR SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN COMPLEX SPACE FORMS

  • KI, U-Hang;SONG, Hyunjung
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.549-581
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c), c≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that M satisfies R𝜉S = SR𝜉 and at the same time R𝜉𝜙 = 𝜙R𝜉, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator

  • Ki, U-Hang;Song, Hyunjung
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.133-166
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c) for c ≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃 ≠ 2c and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉𝜙 = 𝜙R𝜉 and at the same time S𝜉 = g(S𝜉, 𝜉)𝜉, then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that $\bar{r}-2(n-1)c{\leq}0$, where $\bar{r}$ denotes the scalar curvature of M.

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1315-1327
    • /
    • 2011
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},\;{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi}{\phi}S=R_{\xi}S{\phi}$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL

  • Kim, Nam-Gil
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.185-201
    • /
    • 2009
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ of a nonflat complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In this paper, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM

  • Ki, U-Hang;Kim, In-Bae;Lim, Dong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • Let M be a real hypersurface with almost contact metric structure $(\phi,g,\xi,\eta)$ in a complex space form $M_n(c)$, $c\neq0$. In this paper we prove that if $R_{\xi}L_{\xi}g=0$ holds on M, then M is a Hopf hypersurface in $M_n(c)$, where $R_{\xi}$ and $L_{\xi}$ denote the structure Jacobi operator and the operator of the Lie derivative with respect to the structure vector field $\xi$ respectively. We characterize such Hopf hypersurfaces of $M_n(c)$.