• Title/Summary/Keyword: Allocation Of Order Quantity

Search Result 29, Processing Time 0.18 seconds

Strategic Selection and Management of Suppliers, and Allocation of Order Quantity for Supply Chain Management in Automotive Parts Manufacturers (자동차부품산업에서 공급사슬경영을 위한 공급자 선정.관리 및 주문량 배분에 관한 연구)

  • Jang, Gil-Sang;Kim, Jae-Kyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.142-158
    • /
    • 2009
  • The supplier selection problem is perhaps the most important component of the purchasing function. Some of the common and influential criteria in the selection of a supplier include quality, price, delivery, and service. These evaluation criteria often conflict, however, and it is frequently impossible to find a supplier that excels in all areas. In addition, some of the criteria are quantitative and some are qualitative. Thus, a methodology is needed that can capture both subjective and objective evaluation measures. The Analytic Hierarchy Process(AHP) is a decision-making method for ranking alternative courses of action when multiple criteria must be considered. This paper proposes the AHP-based approach which can structure the supplier selection process and the achievements-based procedure which can allocate order quantities for the selected suppliers In automotive part manufacturers. Also, through the practical case of 'D' automotive part manufacturing company, we shows that the proposed AHP based supplier selection approach and the achievements-based allocation procedure of order quantity can be successfully applied for supplier selection and order quantity allocation problems.

Development of a Composite Revenue Sharing-Quantity Flexibility Contract

  • Lumsakul, Pasuree;Luong, Huynh Trung
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.224-233
    • /
    • 2013
  • In supply chain management, the supply contract can induce collaboration and coordination among the supply chain members in order to optimize supply chain performance. Numerous supply contracts have been examined; however, some difficulties related to the application of these contracts still occur. One of the solutions is to apply the composite supply contract which can assist in the supply chain coordination. This research examines the composite contract of the revenue sharing and quantity flexibility contracts in a two-stage supply chain, which comprises a retailer and a supplier. In this research, a mathematical model of the composite contract is developed; then, the applicability of the proposed composite contract is examined by investigating its capability in terms of supply chain coordination and profit allocation. In the numerical experiments, the composite revenue sharing-quantity flexibility contract showed that it is superior to both component contracts in terms of supply chain coordination and profit allocation among supply chain members.

The Use of Particle Swarm Optimization for Order Allocation Under Multiple Capacitated Sourcing and Quantity Discounts

  • Ting, Ching-Jung;Tsai, Chi-Yang;Yeh, Li-Wen
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2007
  • The selection of suppliers and the determination of order quantities to be placed with those suppliers are important decisions in a supply chain. In this research, a non-linear mixed integer programming model is presented to select suppliers and determine the order quantities. The model considers the purchasing cost which takes into account quantity discount, the cost of transportation, the fixed cost for establishing suppliers, the cost for holding inventory, and the cost of receiving poor quality parts. The capacity constraints for suppliers, quality and lead-time requirements for the parts are also taken into account in the model. Since the purchasing cost, which is a decreasing step function of order quantities, introduces discontinuities to the non-linear objective function, it is not easy to employ traditional optimization methods. Thus, a heuristic algorithm, called particle swarm optimization (PSO), is used to find the (near) optimal solution. However, PSO usually generates initial solutions randomly. To improve the PSO solution quality, a heuristic procedure is proposed to find an initial solution based on the average unit cost including transportation, purchasing, inventory, and poor quality part cost. The results show that PSO with the proposed initial solution heuristic provides better solutions than those with PSO algorithm only.

Vendor Selection Using TOPSIS and Optimal Order Allocation (TOPIS를 이용한 공급업체 선정과 최적주문량 결정)

  • Kim, Joon-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • A vendor selection problem consists of two different kinds of decision making. First one is to choose the best suppliers among all possible suppliers and the next is to allocate the optimal quantities of orders among the selected vendors. In this study, an integration of the technique for order preference by similarity to ideal solution (TOPSIS) and a multi-objective mixed integer programming (MOMIP) is developed to account for all qualitative and quantitative factors which are used to evaluate and choose the best group of vendors and to decide the optimal order quantity for each vendor. A solution methodology for the vendor selection model of multiple-vendor, multiple-item with multiple decision criteria and in respect to finite vendor capacity is presented.

Order Promising Rolling Planning with ATP/CTP Reallocation Mechanism

  • Chen, Juin-Han;Lin, James T.;Wu, Yi-Sheng
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Available-to-promise (ATP) exhibiting availability of manufacturing resources can be used to support customer order promising. Recently, one advanced function called Capable-to-promise (CTP) is provided by several modern APS (advanced planning system) that checks available capacity for placing new production orders or increasing already scheduled production orders. At the customer enquiry stage while considering the order delivery date and quantity to quote, both ATP and CTP are allocated to support order promising. In particular, current trends of mass customization and multi-side production chain derive several new constraints that should be considered when ATP/CTP allocation planning for order promising - such as customer's preference plants or material vendors, material compatibility, etc. Moreover, ATP/CTP allocation planning would be executed over a rolling time horizon. To utilize capacity and material manufacturing resource flexibly and fulfill more customer orders, ATP/CTP rolling planning should possess resource reallocation mechanism under the constraints of order quantities and delivery dates for all previous order promising. Therefore, to enhance order promising with reliability and flexibility to reallocate manufacturing resource, the ATP/CTP reallocation planning mechanism is needed in order to reallocate material and capacity resource for fulfilling all previous promised and new customer orders beneficially with considering new derived material and capacity constraints.

Initial Ship Allocation for the Fleet Systematization (선단구성을 위한 초기배선)

  • 이철영;최종화
    • Journal of the Korean Institute of Navigation
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 1984
  • The economical property of a shipping enterprise, as well as other transportation industries, is determined by the difference between the freight earned and expense paid. This study can be regarded as a division of optimizing ship allocation to routes under the integrated port transport system. Fleet planning and scheduling require complicated allocations of cargoes to ships and ships to routes in order to optimize the given criterion function for a given forecast period. This paper deals with the optimum ship allocation problem minimizing the operating cost of ships in a shipping company. Optimum fleet operating for a shipping enterprise is very important, since the marine transportation is a form of large quantity transport requiring long-term period, and there is a strong possibility to bring about large amount of loss in operation resulting from a faulty ship allocation. Where there are more than one loading and discharging ports, and a variety of ship's ability in speed, capacity, operating cost etc., and when the amount of commodities to be transported between the ports has been determined, then the ship's schedule minimizing the operating cost while satisfying the transport demand within the predetermined period will be made up. First of all a formula of ship allocation problems will be established and then will be constructed to solve an example by the Integer Programming application after consideration of the ship's ability, supply and demand of commodity, amount of commodity to be transported, operating costs of each ship etc. This study will give good information on deciding intention for a ship oprator or owner to meet the computerization current with shiping management.

  • PDF

Mathematical Model for Revenue Management with Overbooking and Costly Price Adjustment for Hotel Industries

  • Masruroh, Nur Aini;Mulyani, Yun Prihantina
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.207-223
    • /
    • 2013
  • Revenue management (RM) has been widely used to model products characterized as perishable. Classical RM model assumed that price is the sole factor in the model. Thus price adjustment becomes a crucial and costly factor in business. In this paper, an optimal pricing model is developed based on minimization of soft customer cost, one kind of price adjustment cost and is solved by Lagrange multiplier method. It is formed by expected discounted revenue/bid price integrating quantity-based RM and pricing-based RM. Quantity-based RM consists of two capacity models, namely, booking limit and overbooking. Booking limit, built by assuming uncertain customer arrival, decides the optimal capacity allocation for two market segments. Overbooking determines the level of accepted order exceeding capacity to anticipate probability of cancellation. Furthermore, pricing-based RM models occupancy/demand rate influenced by internal and competitor price changes. In this paper, a mathematical model based on game theoretic approach is developed for two conditions of deterministic and stochastic demand. Based on the equilibrium point, the best strategy for both hotels can be determined.

Optimization of Quantity Allocation using Integer Linear Programming in Shipbuilding Industry (정수 선형 최적화를 이용한 조선해양 의장품 제작 물량 할당에 관한 연구)

  • Park, JungGoo;Kim, MinGyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.45-51
    • /
    • 2020
  • In this study, we developed an allocation optimization system for supply chain management in the shipbuilding and offshore construction industry. Supply chain operation is a way of operating manufacturing company responsible for the procurement of outfitting parts. The method about how to allocate the manufacturing volume to each partner company includes important decisions. According to the allocation method, the stability of the material supplied to the final installation process is guaranteed. We improved the allocation method that was previously decided by the person in charge. Based on the optimization engine, a system is developed that can automatically allocate the production volume. For optimization model configuration, factors affecting the volume allocation were analyzed and modeled as constraint factors. A target function is defined to minimize the difference in the load variance of each partner company. In order to use the same type of volume allocation engine for various outfitting products, the amount of work done by the partner company was standardized. We developed an engine that can allocate the same production load of each production partner. Using this engine, the operating system was developed and applied to the actual offshore project. It has been confirmed that the work load variance of suppliers can be maintained uniformly using the optimization engine rather than manual method. By this system, we stabilize the manufacturing process of partner suppliers.

Evaluation of Order for Allocation of Rescue Unit using Analytic Network Process (ANP법을 이용한 수색.구조선의 할당순위 평가)

  • Jang, Woon-Jae;Keum, Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.155-160
    • /
    • 2007
  • This paper aims to evaluation of order for allocation of rescue unit using Analytic Network Process. For evaluation, in this paper, assess about person, ship and environment related risk by fuzzy logic and AHP(Analytic hierarchy Process). Also, quantity and quality operation efficiency assess by DEA(Data Envelopment Analysis) and Liquate scale. finally total weight calculate by ANP. At the result, Rescue Units of MP, YS RCC/RSC is order higher. Thus, it needs to have more rescue ships and rescue devices for relieving the risk in the future.

  • PDF

Allocation Order of SRU using Analytic Network Process (ANP법을 이용한 수색구조선의 우선 배치순위)

  • Jang, Woon-Jae;Cho, Jun-Young;Keum, Jong-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.245-251
    • /
    • 2006
  • This is paper aims to evaluate allocation order of SRU using Analytic Network Process. For evaluation, in this paper, assess about person, ship and environment related risk by fuzzy logic and AHP(Analytic hierarchy Process). Also, quantity and quality operation efficiency assess by DEA (Data Envelopment Analysis) and Liquate scale. finally total weight calculate by ANP. At the result, Rescue Units of MP, YS RCC/RSC is order higher. Thus, it needs to have more rescue ships and rescue devices for relieving the risk in the future.

  • PDF