The mapping of dark matter clustering from real to redshift spaces introduces the anisotropic property to the measured density power spectrum in redshift space, known as the Redshift Space Distortion (hereafter RSD) effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to the indefinite cross correlations between the density and velocity fields, and the Finger-of-God (hereafter FoG) effect due to the randomness of the peculiar velocity field. Furthermore, the rigorous test of this mapping formula is contaminated by the unknown non-linearity of the density and velocity fields, including their auto- and cross-correlations, for calculating which our theoretical calculation breaks down beyond some scales. Whilst the full higher order polynomials remains unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the non-local FoG term being independent of the separation vector between two different points, and 2) the local FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the best fitted non-local FoG function is Gaussian, with only one scale-independent free parameter, and that our new mapping formulation accurately reproduces the observed power spectrum in redshift space at the smallest scales by far, up to k ~ 0.3 h/Mpc, considering the resolution of future experiments.
The T-ideal of F(X) generated by $x^{n}$ for all x $\in$ X, is generated also by the symmetric polynomials. For each symmetric poly-nomial, there corresponds one row of the incidence matrix. Finding the nilpotency of nil-algebra of nil-index n is equivalent to determining the smallest integer N such that the (n, N)-incidence matrix has rank equal to N!. In this work, we show that the (n, (equation omitted)$^{(1,....,n)}$-incidence matrix is center-symmetric.
Let R be a noncommutative prime ring of characteristic different from 2, Q be its maximal right ring of quotients and C be its extended centroid. Suppose that $f(x_1,{\ldots},x_n)$ be a noncentral multilinear polynomial over $C,b{\in}Q,F$ a b-generalized derivation of R and d is a nonzero derivation of R such that d([F(f(r)), f(r)]) = 0 for all $r=(r_1,{\ldots},r_n){\in}R^n$. Then one of the following holds: (1) there exists ${\lambda}{\in}C$ such that $F(x)={\lambda}x$ for all $x{\in}R$; (2) there exist ${\lambda}{\in}C$ and $p{\in}Q$ such that $F(x)={\lambda}x+px+xp$ for all $x{\in}R$ with $f(x_1,{\ldots},x_n)^2$ is central valued in R.
The free vibration of a thin plate with three different boundary conditions is discussed in this paper. A semi-analytical approach to the plate problems has been exploited using computer algebra system(CAS). The approximate solutions are assumed as algebraic polynomials that satisfy the appropriate boundary conditions. In order to solve problems, Galerkin method is used, which is known as an ineffective tool for practical engineering problems, being involved with a large number of multiple integration and differentiation. All the admissible functions used in this paper are generated automatically by CAS otherwise a tedious algebraic manipulations should be done by hand. One, six and fifteen-term solutions in terms of frequency parameters are presented and compared with exact solutions. Even using one-term solution, the comparison with existing data shows good agreement and accuracy of the present method.
A problem raised by Selfridge and solved by Pomerance asks to find the pairs (a, b) of natural numbers for which $2^a\;-\;2^b$ divides $n^a\;-\;n^b$ for all integers n. Vajaitu and one of the authors have obtained a generalization which concerns elements ${\alpha}_1,\;{\cdots},\;{{\alpha}_{\kappa}}\;and\;{\beta}$ in the ring of integers A of a number field for which ${\Sigma{\kappa}{i=1}}{\alpha}_i{\beta}^{{\alpha}i}\;divides\;{\Sigma{\kappa}{i=1}}{\alpha}_i{z^{{\alpha}i}}\;for\;any\;z\;{\in}\;A$. Here we obtain a further generalization, proving the corresponding finiteness results in a multidimensional setting.
This paper presents a new optimal three-step eighth-order family of iterative methods for finding multiple roots of nonlinear equations. Different from the all existing optimal methods of the eighth-order, the new iterative scheme is constructed using one function and three derivative evaluations per iteration, preserving the efficiency and optimality in the sense of Kung-Traub's conjecture. Theoretical results are verified through several standard numerical test examples. The basins of attraction for several polynomials are also given to illustrate the dynamical behaviour and the obtained results show better stability compared to the recently developed optimal methods.
Let R be a commutative ring with identity and let R[x] be the collection of polynomials with coefficients in R. There are a lot of multiplications in R[x] such that together with the usual addition, R[x] becomes a ring that contains R as a subring. These multiplications are from a class of functions ${\lambda}$ from ${\mathbb{N}}_0$ to ${\mathbb{N}}$. The trivial case when ${\lambda}(i)=1$ for all i gives the usual polynomial ring. Among nontrivial cases, there is an important one, namely, the case when ${\lambda}(i)=i!$ for all i. For this case, it gives the well-known Hurwitz polynomial ring $R_H[x]$. In this paper, we completely determine the Krull dimension of $R_H[x]$ when R is a $Pr{\ddot{u}}fer$ domain. Let R be a $Pr{\ddot{u}}fer$ domain. We show that dim $R_H[x]={\dim}\;R+1$ if R has characteristic zero and dim $R_H[x]={\dim}\;R$ otherwise.
본 논문에서는 멀티 쉬프팅 기법을 이용한 효율적인 유한체의 역수 연산 알고리즘을 제안하고 있다. 연산 알고리즘의 효율성은 사용하는 기저에 따라 영향이 있음이 많은 선행 연구를 통해 알려져 왔으며, 보편적으로 다항식 기저와 최적 다항식 기저를 사용하여 연구하였다. 본 연구에서는 몽고메리 알고리즘에 바탕을 둔 멀티비트 쉬프팅 기법을 수정하고 구현하였다. 역수 연산을 수행하기 위해 본 연구에서 사용한 기약 다항식타입은 AOP와 3항식 이며, 수행 결과 26%까지의 성능향상을 보였다. 본 논문에서 제안한 알고리즘은 구현이 쉽고, 다양한 분야에서 응용이 가능하다.
유한체(Galois fields)가 타원곡선 암호법 coding 이론 등에 응용되면서 유한체의 연 산은 더많은 관심의 대상이 되고 있다. 유한체의 연산은 표현방법에 많은 영향을 받는다. 즉 최적 정규기 저는 하드웨 어 구현에 용이하고 Trinomial을 이용한 다항식 기저는 소프트웨어 구현에 효과적이다. 이논문에서는 새로운 변형된 다항식 기저를 소개하고 AOP를 이용한 경우 하드웨어 구현에 효과적인 최 적 정규기저와 의 변환이 위치 변화로 이루어지고 또한 이것을 바탕으로 한 유한체의 연산이 소프트웨어적 으로 효율적 임을 보인다. More concerns are concentrated in finite fields arithmetic as finite fields being applied for Elliptic curve cryptosystem coding theory and etc. Finite fields arithmetic is affected in represen -tation of those. Optimal normal basis is effective in hardware implementation and polynomial field which is effective in the basis conversion with optimal normal basis and show that the arithmetic of finite field with the basis is effective in software implementation.
유한체 연산기는 생성 기약다항식과 원소의 표현 방법에 따라 효율성에 많은 영향을 받는다. 본 논문에서는 홀수 소수 p에 대한 확장체 GF$(p^n)$ 위의 곱셈에 대한 두 가지 직렬곱셈기를 제안한다. 기약 이항 다항식을 이용한 직렬 곱셈기는 (2n+5)개의 레지스터, 2개의 MUX, 2개의 GF(p)곱셈기, 1개의 GF(p) 덧셈기를 사용하여 $n^2+n$ 클럭 싸이클 이후에 곱셈 결과를 얻는 구조이다. 기약 AOP를 이용한 직렬 곱셈기는 (2n+5)개의 레지스터, 1개의 MUX, 1개의 GF(p)곱셈기, 1개의 GF(p) 덧셈기를 사용하여 $n^2$+3n+2 클럭 싸이클 이후에 곱셈결과를 얻는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.