• 제목/요약/키워드: All One Polynomials

검색결과 24건 처리시간 0.022초

Study on mapping of dark matter clustering from real space to redshift space

  • Zheng, Yi;Song, Yong-Seon
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.38.2-38.2
    • /
    • 2016
  • The mapping of dark matter clustering from real to redshift spaces introduces the anisotropic property to the measured density power spectrum in redshift space, known as the Redshift Space Distortion (hereafter RSD) effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to the indefinite cross correlations between the density and velocity fields, and the Finger-of-God (hereafter FoG) effect due to the randomness of the peculiar velocity field. Furthermore, the rigorous test of this mapping formula is contaminated by the unknown non-linearity of the density and velocity fields, including their auto- and cross-correlations, for calculating which our theoretical calculation breaks down beyond some scales. Whilst the full higher order polynomials remains unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the non-local FoG term being independent of the separation vector between two different points, and 2) the local FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the best fitted non-local FoG function is Gaussian, with only one scale-independent free parameter, and that our new mapping formulation accurately reproduces the observed power spectrum in redshift space at the smallest scales by far, up to k ~ 0.3 h/Mpc, considering the resolution of future experiments.

  • PDF

CENTER SYMMETRY OF INCIDENCE MATRICES

  • Lee, Woo
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.29-36
    • /
    • 2000
  • The T-ideal of F(X) generated by $x^{n}$ for all x $\in$ X, is generated also by the symmetric polynomials. For each symmetric poly-nomial, there corresponds one row of the incidence matrix. Finding the nilpotency of nil-algebra of nil-index n is equivalent to determining the smallest integer N such that the (n, N)-incidence matrix has rank equal to N!. In this work, we show that the (n, (equation omitted)$^{(1,....,n)}$-incidence matrix is center-symmetric.

  • PDF

b-GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

  • Dhara, Basudeb
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.573-586
    • /
    • 2018
  • Let R be a noncommutative prime ring of characteristic different from 2, Q be its maximal right ring of quotients and C be its extended centroid. Suppose that $f(x_1,{\ldots},x_n)$ be a noncentral multilinear polynomial over $C,b{\in}Q,F$ a b-generalized derivation of R and d is a nonzero derivation of R such that d([F(f(r)), f(r)]) = 0 for all $r=(r_1,{\ldots},r_n){\in}R^n$. Then one of the following holds: (1) there exists ${\lambda}{\in}C$ such that $F(x)={\lambda}x$ for all $x{\in}R$; (2) there exist ${\lambda}{\in}C$ and $p{\in}Q$ such that $F(x)={\lambda}x+px+xp$ for all $x{\in}R$ with $f(x_1,{\ldots},x_n)^2$ is central valued in R.

반해석적 방법에 의한 작은 변위를 가지는 얇은판의 자유진동해석 (Free Vibration of a Thin Plate with Small Deflections by Semi-Analytical Approach)

  • 최덕기
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.1967-1973
    • /
    • 1994
  • The free vibration of a thin plate with three different boundary conditions is discussed in this paper. A semi-analytical approach to the plate problems has been exploited using computer algebra system(CAS). The approximate solutions are assumed as algebraic polynomials that satisfy the appropriate boundary conditions. In order to solve problems, Galerkin method is used, which is known as an ineffective tool for practical engineering problems, being involved with a large number of multiple integration and differentiation. All the admissible functions used in this paper are generated automatically by CAS otherwise a tedious algebraic manipulations should be done by hand. One, six and fifteen-term solutions in terms of frequency parameters are presented and compared with exact solutions. Even using one-term solution, the comparison with existing data shows good agreement and accuracy of the present method.

A CLASS OF EXPONENTIAL CONGRUENCES IN SEVERAL VARIABLES

  • Choi, Geum-Lan;Zaharescu, Alexandru
    • 대한수학회지
    • /
    • 제41권4호
    • /
    • pp.717-735
    • /
    • 2004
  • A problem raised by Selfridge and solved by Pomerance asks to find the pairs (a, b) of natural numbers for which $2^a\;-\;2^b$ divides $n^a\;-\;n^b$ for all integers n. Vajaitu and one of the authors have obtained a generalization which concerns elements ${\alpha}_1,\;{\cdots},\;{{\alpha}_{\kappa}}\;and\;{\beta}$ in the ring of integers A of a number field for which ${\Sigma{\kappa}{i=1}}{\alpha}_i{\beta}^{{\alpha}i}\;divides\;{\Sigma{\kappa}{i=1}}{\alpha}_i{z^{{\alpha}i}}\;for\;any\;z\;{\in}\;A$. Here we obtain a further generalization, proving the corresponding finiteness results in a multidimensional setting.

A NEW OPTIMAL EIGHTH-ORDER FAMILY OF MULTIPLE ROOT FINDERS

  • Cebic, Dejan;Ralevic, Nebojsa M.
    • 대한수학회지
    • /
    • 제59권6호
    • /
    • pp.1067-1082
    • /
    • 2022
  • This paper presents a new optimal three-step eighth-order family of iterative methods for finding multiple roots of nonlinear equations. Different from the all existing optimal methods of the eighth-order, the new iterative scheme is constructed using one function and three derivative evaluations per iteration, preserving the efficiency and optimality in the sense of Kung-Traub's conjecture. Theoretical results are verified through several standard numerical test examples. The basins of attraction for several polynomials are also given to illustrate the dynamical behaviour and the obtained results show better stability compared to the recently developed optimal methods.

KRULL DIMENSION OF HURWITZ POLYNOMIAL RINGS OVER PRÜFER DOMAINS

  • Le, Thi Ngoc Giau;Phan, Thanh Toan
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.625-631
    • /
    • 2018
  • Let R be a commutative ring with identity and let R[x] be the collection of polynomials with coefficients in R. There are a lot of multiplications in R[x] such that together with the usual addition, R[x] becomes a ring that contains R as a subring. These multiplications are from a class of functions ${\lambda}$ from ${\mathbb{N}}_0$ to ${\mathbb{N}}$. The trivial case when ${\lambda}(i)=1$ for all i gives the usual polynomial ring. Among nontrivial cases, there is an important one, namely, the case when ${\lambda}(i)=i!$ for all i. For this case, it gives the well-known Hurwitz polynomial ring $R_H[x]$. In this paper, we completely determine the Krull dimension of $R_H[x]$ when R is a $Pr{\ddot{u}}fer$ domain. Let R be a $Pr{\ddot{u}}fer$ domain. We show that dim $R_H[x]={\dim}\;R+1$ if R has characteristic zero and dim $R_H[x]={\dim}\;R$ otherwise.

개선된 역수연산에서의 멀티 쉬프팅 알고리즘 (Modified Multi-bit Shifting Algorithm in Multiplication Inversion Problems)

  • 장인주;유형선
    • 한국전자거래학회지
    • /
    • 제11권2호
    • /
    • pp.1-11
    • /
    • 2006
  • 본 논문에서는 멀티 쉬프팅 기법을 이용한 효율적인 유한체의 역수 연산 알고리즘을 제안하고 있다. 연산 알고리즘의 효율성은 사용하는 기저에 따라 영향이 있음이 많은 선행 연구를 통해 알려져 왔으며, 보편적으로 다항식 기저와 최적 다항식 기저를 사용하여 연구하였다. 본 연구에서는 몽고메리 알고리즘에 바탕을 둔 멀티비트 쉬프팅 기법을 수정하고 구현하였다. 역수 연산을 수행하기 위해 본 연구에서 사용한 기약 다항식타입은 AOP와 3항식 이며, 수행 결과 26%까지의 성능향상을 보였다. 본 논문에서 제안한 알고리즘은 구현이 쉽고, 다양한 분야에서 응용이 가능하다.

  • PDF

변형된 다항식 기저를 이용한 유한체의 연산 (Arithmetic of finite fields with shifted polynomial basis)

  • 이성재
    • 정보보호학회논문지
    • /
    • 제9권4호
    • /
    • pp.3-10
    • /
    • 1999
  • 유한체(Galois fields)가 타원곡선 암호법 coding 이론 등에 응용되면서 유한체의 연 산은 더많은 관심의 대상이 되고 있다. 유한체의 연산은 표현방법에 많은 영향을 받는다. 즉 최적 정규기 저는 하드웨 어 구현에 용이하고 Trinomial을 이용한 다항식 기저는 소프트웨어 구현에 효과적이다. 이논문에서는 새로운 변형된 다항식 기저를 소개하고 AOP를 이용한 경우 하드웨어 구현에 효과적인 최 적 정규기저와 의 변환이 위치 변화로 이루어지고 또한 이것을 바탕으로 한 유한체의 연산이 소프트웨어적 으로 효율적 임을 보인다. More concerns are concentrated in finite fields arithmetic as finite fields being applied for Elliptic curve cryptosystem coding theory and etc. Finite fields arithmetic is affected in represen -tation of those. Optimal normal basis is effective in hardware implementation and polynomial field which is effective in the basis conversion with optimal normal basis and show that the arithmetic of finite field with the basis is effective in software implementation.

제약적인 환경에 적합한 유한체 연산기 구조 설계 (Design of an Operator Architecture for Finite Fields in Constrained Environments)

  • 정석원
    • 정보보호학회논문지
    • /
    • 제18권3호
    • /
    • pp.45-50
    • /
    • 2008
  • 유한체 연산기는 생성 기약다항식과 원소의 표현 방법에 따라 효율성에 많은 영향을 받는다. 본 논문에서는 홀수 소수 p에 대한 확장체 GF$(p^n)$ 위의 곱셈에 대한 두 가지 직렬곱셈기를 제안한다. 기약 이항 다항식을 이용한 직렬 곱셈기는 (2n+5)개의 레지스터, 2개의 MUX, 2개의 GF(p)곱셈기, 1개의 GF(p) 덧셈기를 사용하여 $n^2+n$ 클럭 싸이클 이후에 곱셈 결과를 얻는 구조이다. 기약 AOP를 이용한 직렬 곱셈기는 (2n+5)개의 레지스터, 1개의 MUX, 1개의 GF(p)곱셈기, 1개의 GF(p) 덧셈기를 사용하여 $n^2$+3n+2 클럭 싸이클 이후에 곱셈결과를 얻는다.