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A NEW OPTIMAL EIGHTH-ORDER FAMILY OF MULTIPLE
ROOT FINDERS

DEjAN CEBIG AND NEBOJSA M. RALEVIC

ABSTRACT. This paper presents a new optimal three-step eighth-order
family of iterative methods for finding multiple roots of nonlinear equa-
tions. Different from the all existing optimal methods of the eighth-order,
the new iterative scheme is constructed using one function and three de-
rivative evaluations per iteration, preserving the efficiency and optimality
in the sense of Kung-Traub’s conjecture. Theoretical results are verified
through several standard numerical test examples. The basins of attrac-
tion for several polynomials are also given to illustrate the dynamical
behaviour and the obtained results show better stability compared to the
recently developed optimal methods.

1. Introduction

Approximating the roots of the nonlinear equation f(z) = 0 is one of the
most important tasks in numerical mathematics with many applications in
engineering and science. There is a great amount of literature that deals with
the problem of determining the simple root (say «) of the nonlinear equation,
but not so many papers address the case when « is the root of multiplicity
m > 1 (which means that f)(a) =0fori=0,1,...,m—1, and f™(a) # 0).

A very basic multiple root finding method is modified Newton’s method [15]
(also known as Rall’s method [14])

f(xn)’
This one-point method is quadratically convergent and therefore optimal in the
sense of Kung-Traub’s conjecture [9] which states that any multipoint iterative
scheme that requires s function/derivative evaluations per iteration can reach
at most 257! convergence order.

In the last decade, many researchers have developed the multistep methods
of the higher convergence order using method (1) as the first step in their

(1) Tpal = Tp — n=12,....
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iterative schemes. For example, such Newton-type methods of optimal fourth-
order can be found in [10,11,25] and some more efficient optimal eighth-order
methods are described in [1,3,4,7,23,24]. Nevertheless, the majority of those
methods could be considered as the generalizations of the optimal two or three-
step optimal methods constructed for finding the simple roots. Thus, several
well-known fourth and eighth-order multiple root finders have been derived
in [13] directly from the previously published methods for simple roots by
using a relatively simple technique for generalization. All of the eighth-order
methods mentioned above require three function evaluations and one derivative
evaluation per iteration.

Very recently, Sharma and Kumar [17] have constructed the optimal eighth-
order iterative scheme

Yn = Ty — T f(@n)
f(@n)’
2 Zn = Yn — mQ Un 3
@ ) )
Tp
Tn+l = Zn — munwnw(un7wn)ff-,((x))7
for m > 1, where u,, = (;:EZ:;)ﬁ, Up = (}{E;:;)%, wy, = 7=, while Q(u) and

W (u,w) are analytic functions in a neighborhood of 0 and (0,0) that satisfy
conditions summarized in the theorem [17, page 319]. Despite all existing
optimal eighth-order methods, method (2) uses two function and two derivative
evaluations per iteration.

In the next section, we present the new three-step family of iterative methods
of the optimal eighth-order. Uniqueness of the family lies in the fact that
the iterative scheme requires one function and three derivative evaluations per
iteration, in contrast to the all other eighth-order methods including Sharma
and Kumar’s method (2). In the last two sections, the numerical efficiency and
the dynamic behaviour of the new family members are compared to the other
recently developed optimal methods.

2. A new iterative family

The first two steps of method (2) are actually the optimal fourth-order de-
rived by Liu and Zhou [11]. They established the following conditions function
(@ must satisfy to provide the optimal fourth-order of convergence of Liu-Zhou
method,

3) Q) =0, Q(0)=1, Q"(0)=

Sharma and Kumar have improved the Liu-Zhou method by adding the third
step that involves the additional function evaluation f(z,). In contrast to this,
the new iterative family consists of the Liu-Zhou method and the third step

4m
m—1
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that requires the additional evaluation of f/(z,). Hence, the general form of
the new iterative scheme is

S
y’ﬂ - xn f/(xn),
_ f(@n)
_ f(xn)
Tny1 = 2n — MG (U, wn)m’

where u, = (;:Ez”))m and w, = (%)m, while Q(u) and G(u,w) are
analytic in neighborhoods of 0 and (0, 0), respectively.
Since the new scheme should provide eighth convergence order, we need

proper forms of Taylor’s expansions of f(z,) and f’(x,) about a, given by

8

_ ()

6 flan) = T D (143 el + 0(),
(m) « 8 m 1 .
O Fle) = L 0 X P e+ 0(e).

where e, = z, —a and ¢; = (m!/(m +1)!) - (f™T)(a)/f™) (a)) for i > 1. Let
€n = Yn — a and €, = z,, — a be the errors of the first and second step in the
n-th iteration. From (5) and (6), the error of the first step e, in terms of e,
equals

—~ s [C1 2\ €n
=22 (2me — 1+ En
€ en[ (2mey — (14 m)cf) =

2
+ (1 +m)*c} —m(4 4 3m)eico + 3mPes) e—’;
m
+ (= (L+m)*c + 2m(1 +m)(3 4 2m)cics
3
(7) —2m?(2 4+ m)c3 — 2m*(3 + 2m)cics + 4miey) %
+ (1 +m)*e} — m(1+m)*(8 + 5m)ciea+m? (1 +m)(9 + 5m)cics
+m?c1((2 +m)(6 + 5m)cz — m(8 + 5m)cy)
4
e'n.

+m?(5mes — (12 + 5m)cacs)) 4 } +0(e?).

It is clear that

(M) (o m+i
® L= Lt 4 3 M e 1 0@).



1070 D. CEBIC AND N. M. RALEVIC

Therefore, using (6) and (8), after substituting (7) into (8), we get

un = "N f'(yn)/ ' ()
+ (=2 = m+2m?* +3m® + 2m*)c} — 2m* (=4 + m + 3m?)cico

2

en

6(m — 1)m2es) ——n
+6(m — 1)°m?cs) 2m(m — 1)
) 2 2 3 4\ 4
+ ((14+m)?*(6 — 16m + 7m* — m® + 6m*)c}
—6m(4 —m — 8m? — 3m> + 4m* + 4m®)ciey + 12(m — 1)*m3eic3
3
en

+12(m — 1)*>m*((2 4+ m)c3 — 2(m — 1)cq)) Gmi(m — 1)

+-~-}+O(e§;).

If the function Q(-) satisfies conditions (3), then from (5), (6), (9) and Taylor’s
expansion of Q(u,) about 0, the error of the second step €, has a form

€n = ((3(2 +m+8m* +m?®) — (m —1)*Q"(0))c}
€
6m3(m — 1)2

+ [ —48m3(m — 1)%c3 — 48m3(m — 1)%cyc3

+ 6m2(1 — ’ITL)ClCQ)

(10) + 24m(m — 1) (4 + 2 + 24m® + 4m® — (m — 1)°Q"(0))cics

+ (4(1 +m)(12 + 5m + 9Im® — 63m® — Tm*)
+4(m — 1)2(3m?* + 4m — 1)Q"(0)

e5

394 4 9
— (m—1)*Q! )(0))01} m + -+ 0(ey,).
Substituting €, instead e, into (6) to get f’(z,), using (8) and Taylor’s expan-
sion of (m — 1)st root, we have

wn = "N f"(z) /' (yn)

- ((6 4 3m 4 24m? +m® — (m — 1)2Q"(0))c2

2 e
+6m=(1 — m)62> m
(11) + [16m(m —1)(3 + 3m + 24m? + 3m3 — (m — 1)2Q"(0))c1cs

n (8(1 +m)(3+dm — 6m? — 21m? — 2m?)

+8m(2 4+ m)(m — 1)2Q"(0) — (m — 1°Q)(0) )¢}
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3
3 2 €n 6
—48m (m—l) C3 m++0(€n)
Since €, = 2z, —a = O(e}) and f(x,)/f (z,) = O(ey), from the third step
of (4) it is clear that the function G(u,,w,) should be of third-order, which
means that, with respect to (9) and (11), in Taylor’s expansion of G about
(0,0) we have

oG 0*G oG
12 =0, — =0, —— — il —0.
(12)  G(0,0)=0, $2(0,0) =0, Z=2(0,0) =0 and 52(0,0) =0
Moreover, to achieve the optimal eighth-order, all coefficients of e,,€2,... el

should vanish in error equation e, 1 = x,,+1 — a. Thus, from the third step of
(4), taking into account (5), (6), (10) and Taylors expansion of G (uy,, wy,), after
simple computation we get the following conditions which provide optimality
of the method:

i J
G(0,0):%(0,0):%(0,0):O for i€ {1,2,3,4,5,6} and je {1,2,3)
0*°G 212G dm 3G
8u6w( 0 =1 8u28w( '0) m—1" Qudw? 0,0) =2,
G 8(2m? —-1) 9'G m+1 "
13) ——— = = 6———
(13) 8u28w2( '0) m(m—1)"’ 8u38w(070) 6mf 1 + @70,
’a —48(m +1)(2m? + 1 m+ 1
8u48w( 0) = (m(m )—( 1)? : e m Q"(0) +Q®(0).
Therefore, if conditions (13) are satisfied, it yields

f'(xn)

Tna1 = 2n — MG (U, wy) =z, — o+ O(ei),

ie., epni1 = Tpp1 —a=0(ed).
The above discussion is summarized in the following theorem.

Theorem 2.1. Let a be a multiple root of known multiplicity m of a sufficiently
differentiable function f(x). If the initial iteration xg is close enough to «, and
if functions @Q and G satisfy conditions (3) and (13) respectively, then family
of methods defined by (4) is of optimal eighth convergence order.

Remark 1. Some parts of the expressions in the previous analysis are inten-
tionally omitted for the sake of simplicity. All the results have been done and
verified with the aid of Mathematica’s symbolic computation system.

Remark 2. Since family (4) possesses eighth convergence order, and requires
one function and three derivative evaluations per iteration, it is clear that the
family is optimal in the sense of Kung-Traub’s conjecture.

Three special cases of (4) based on the different choices of Q(u,) and G(uy,
wy,) have been considered for the numerical comparisons. The first new method
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is defined as
Yn = Tr — M f(zn)
SRR es)

Zn:yn*m<un+

m—1"/f(xn)’
2 .2
B (Un + m(m—l)u")wn f($n)
Tn+l = 2n —M - 2(m+1)un + 3(m+11)u2 — Wn . f/(xn)

and denoted by NM1. The second one, denoted by NM2, has the following
form
Yn = Ty — M f(zn)
" " f(an)’
(m —1un ) f(@n)

Zn = Yn —
n = Yn m—1-=2mu, f(x,)
2 2
(un + m(m_l)un)wn f(xn)
Tpt1 = 2n —M : )
" " 1- 2(”:”+1)un - (miﬁ’z u2 —w, J'(Tn)

The third one is NM3 given by
-m ,
f'(zn)
(m —Duy, ) f(xn)

m—1-=2mu, f'(z,)’

Yn = Tn

Zn = Yn —M

2 2 2
(“n + m(m—l)“n)“’” T+ Untty f(@n)
Tpi1l = 2p —M 2m . .
_2m+l) . m243 2 _ 2m_ "z
1 e Un = oDz Un ~ et UnWn f'(xn)

3. Numerical comparison

In this section, several test examples are employed in order to verify the
theoretic results from the previous section and to illustrate the effectiveness of
the methods NM1, NM2 and NM3. The results are compared with the very
recently developed Newton-type methods of the optimal eighth-order.

Such existing method is the one proposed by Zafar et al. [22], denoted by
ZCJT, with the following structure

_ f(xn)

S T

1+ 8u, + 11u2  f(z,)
146u,  f'(2)

Zn = Yn — MUp

[y,

)

1
Tyl = 2n — mwn(l +t, + iti +un(2+ 4tn))

~—
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_(fw) T (£ _ (1"
where u,, = (f(wn)) ,tn = (f(yn,)) and w,, = (f(rn)) .

Behl et al. [2] have developed an efficient family (14) and tested several
special cases. We choose two members of this family with the best performance
in the original research. This family has the following general form

f(zn)

Yn = Tpn — M ’
f'(x)

o — mEH (v f(zn)
- mwy, \ f(xy)
Tn+l = Zn — Wplnp (G(U’n) + 1— 4Un) f’(In)’

1 1
where u,, = (;Eg:;) "ow, = (;EZ:%) oo, = }igg: for some real numbers

«a # [ and H and G are analytic functions in neighborhoods of 1 and 0. The
first chosen special case is denoted by BAASA1 for and o = 1/2, § = —3/2
and functions
a— LB+ 2v, —2
-8
The second special case BAASA2 uses a =0, 8 = —2 and functions
a—B+2v, —2 ~ m(28%un + B2 — 4ud) — (Bun +1)?)

H(vy,)=m , Gup) =m(142u,+(1-2B8)us+2(8*—28—-2)uj ).

Kumar et al. [8] have constructed the eighth-order family
n = Tn — ’
g f'(@a)
Zn = Yn — My (1 + 2u, — ui)j:/(én)y
f Tn f Tn
Tnt1 = 2n — m(1 + up)v, H(vy) f’((x )) —m(uy + wy ) v, G(uy,) f/((x ))7
(LT (LT (e
where u,, = (f(zn)) , Up = (f(m)) , Wy = (f(zm)) , while H and G are

analytic functions in neighborhood of 0. The special case (KKSdA) with the
best performance in the original research is the one where

1+ 6u,
d Glup) = ——— 2
=i, 2 Clun) =5 =52

Finally, the variant of Sharma-Kumar’s family (2) that we use for the com-
parison has been established in [17] for

H(v,) =

2m 5, 6m*+m3 —5m? —3m -3 ,
Q(u")_un+m—1un 3(m—1)2(m2 —m —1) "

m—1 Up k1w, kot
w ny Wn) = 1 2 n — Wn 7( )7
(un, wn) + U m +3 m2 m3 —2m?2 + 1

no
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where k; = 6(2m? — 2m — 1) and ks = 9m?® — 8m? — 5m + 6. This method is
denoted by SK.

Table 1 displays the test functions used for the comparison, with appropriate
root « and its multiplicity m.

Table 1. Test functions

f(z) a m
fi(z) = (m —z%cos Z2 + 1342 —30.1)(z — 3)* 3 5
fa(@) = exp( 5+((cf>s<(zz5 ot?3)2+3)) 1 0.5 4 /3 2
fa(z) = 2 +11.5234-47.492% 4 83.0632524-51.23266875 —2.85 2
fa(z) = ( cosx — m) 0.7390851... 3
fs(x) = (arcsm(az -1) —|— e’ — 3) 1.0579494... 2
fo(z) = (22 — e™® 4 sina? — 3)° 3.8173523... 5

Tables 2-7 present the number of iterations (it) required to satisfy stopping
criterion | f(x,,)| < 1071099 Along with that, errors |z, —a| and residual errors
|f(x,)| are given for each method after the third iteration. The tables also
show the computational order of convergence [21] given by

 log|(zn — )/(2ams — a)
COC = g (wnms — ) (@ — )]

which has been used to numerically check the convergence order of the proposed
methods. The last columns display CPU time computed as the average of 25
performances of each method. If an algorithm fails to find the root within 100
iterations, it is denoted by

All computations have been done using Mathematica program package with
the aid of SetPrecision function with 10000 precision digits. The performances
of the computer have been 64-bit Windows 10 Pro operating system and AMD
Ryzen 7 1700 eight-core CPU 3.00 GHz processor.

Table 2. Numerical results for fi(z) and zo = 2.87
method it |zs — af |f(z3)| COC CPU

ZCJT 3 1.4577-107818 1.8392-1074%%  8.0000  0.0312
BAASA1 3 4.5649 - 107803 5.5386 - 10741 8.0000  0.0306
BAASA2 3 2.3604 - 107893 2.0472-1074%2  8.0000  0.0294
KKSdA 3 9.0274 - 10789 1.6751-1073%°%  8.0000  0.0325
SK 3 1.4194 - 107796 1.6096 - 1073°7®  8.0000  0.0412
NM1 3 1.0260 - 107857 3.1769-1074%%*  8.0000  0.0469
NM2 3 1.5370 - 107865 2.3963-107432%  8.0000  0.0488
NM3 3 8.9639 - 10782 1.6170-1073%°  8.0000  0.0506
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Table 3. Numerical results for f2(z) and xzo = 0.495 + 1.72¢

method it |zs — |f(z3)] COC CPU

ZCJT 5 7.1869 - 10216 3.0946 - 10743! 6.0104  0.155
BAASA1 4 1.7861 - 10229 1.9113 - 10~4°8 14.050  0.132
BAASA2 5 9.3159 - 107123 5.1996 - 10~ 24° 6.0250  0.157
KKSdA 4 4.2989 - 107413 1.1072 - 10782 4.0000  0.142
SK 4 2.7323 .10 4.4729 - 107398 4.0000  0.156
NM1 3 1.3399 . 10808 1.0757 107116 80000  0.140
NM2 3 1.3120 - 10779 1.0313-107°8  8.0000  0.143
NM3 3 2.1424 - 107804 2.7499 - 107159 8.0000  0.143

Table 4. Numerical results for f3(z) and zo = —3.4

method it |xs — o | f(x3)] COC CPU
ZCJT 13 12.452 23981 6.0026  0.0950
BAASA1 - - - - -
BAASA2 - - - - -
KKSdA 11 1.4981 0.29865 13.981  0.0844
SK 4 3.3798 - 107 2.3988 - 107127 8.0000  0.0081
NM1 4 6.4848 - 107 18! 8.8311 - 107361 8.0000  0.0069
NM2 4 3.0560 - 1072%° 1.9612 - 107%57 8.0000  0.0075
NM3 4 2.8531 - 107257 1.7095 - 10733 8.0000  0.0081
Table 5. Numerical results for f4(z) and zo =1
method it |zs — «f |f(z3)| cocC CPU
ZCJT 3 1.3542 - 107496 1.1642- 10787 8.0000  0.0575
BAASA1 3 3.3886 - 107592 1.8240 - 10717 8.0000  0.0581
BAASA2 7 1.6438 - 10739 2.0821 - 107116 2.0000  0.1540
KKSdA 3 2.8142 - 107483 1.0448 - 107147 8.,0000  0.0594
SK 3 1.7382 - 107492 2.4620-107*7  8.0000  0.0431
NM1 3 3.2879 - 107501 1.6661-107'%%"  8.0000  0.0569
NM2 4 1.9335 - 107193 3.3884-1075™8 2.2831  0.0663
NM3 3 5.5417 - 107527 7.9779 10717 8.0000  0.0494
Table 6. Numerical results for f5(z) and zo = 0.9

method it |xs — |f(x3)] COC CPU
ZCJT 5 1.7022-107°° 7.2776 - 10~% 14.183  0.097
BAASA1 6 1.2364 - 1077 3.8394 - 10713 8.0000  0.188
BAASA2 8 9.8845-1076 2.4539-107° 6.0159  0.159
KKSdA 6 2.7924-107° 1.9585-107° 8.0000  0.119
SK 4 2.9970- 1071  2.2559.1072%¢ 34290  0.086
NM1 4 7.2622 - 10734 1.3246 - 10767 8.0000  0.093
NM2 4 1.6300 - 107416 6.6730 - 107531 8.0000  0.094
NM3 4 5.6748-107*%  8.0881-107%**  8.0000  0.095
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Table 7. Numerical results for fg(z) and zo = 0.75

method it |zs — |f(z3)] COC CPU
7ZCJT 7 1.1372- 10~ 3.3738 .10 118 1.9960  0.301
BAASA1 6 5.9075- 1078 1.2765 - 10734 8.0000  0.271
BAASA2 6 5.9072 - 1078 1.2762 - 10734 8.0000  0.269
KKSdA 4 1.2927 - 10728 6.4040 - 107138 7.9998  0.188
SK 5 1.8431-10716 3.7735-10777 14.045  0.243
NM1 4 7.5331.107% 4.3038 - 107459 8.0000  0.127
NM?2 4 4.0614 - 10723 1.9604 - 107460 8.0000  0.122
NM3 4 6.9922 - 1027 2.9652 - 1071?° 7.9998  0.121

Obviously, the values of the COC columns confirm eighth-order of con-
vergence of the new proposed methods. According to the numerical results
computed for the inner three columns, all new methods are very competitive
compared to the existing ones.

4. Dynamical comparison

Another very frequent way of comparing the iterative methods is the analysis
of their basins of attraction in the complex plane (see, for example [6,12,16,18]).
Through the basins of attraction analysis, researchers are able to visualize the
areas of convergence of particular roots of f(x) in the complex plane for the
iterative methods under consideration. Here we only give a brief review of
some basic concepts related to basins of attraction, while the underlying ideas
as well as the description of the dynamical behaviour of the methods in more
details can be found in [5,18-20].

For a function F : C — C (where C is the Riemann sphere), zo € C is a
fixed point if F'(29) = zo. Fixed point can be attracting, repelling or neutral, if
|F'(20)| < 1, |F'(20)| > 1 or |F'(z0)| = 1, respectively. The orbit of any point
z is defined as a set orb(z) = {z, F(z), F?(z),...}, and if there exist some point
Zand k € N where F*(2) = Z and F*(%) # 2, s < k, then such point Z is called
periodic with period k. Therefore, the fixed point is periodic with period 1.

If a is an attracting fixed point of F, then its corresponding basin of attrac-
tion can be defined as a set A(«) given by

A(a) ={z0 € C: F™(20) = o, n — oo},

which means that the basin of attraction consists of the starting points whose
orbits tend to the attractor a. The set of such points whose orbits converge to
any attractor is called the Fatou set, while the Julia set is its complementary
set and it establishes the borders between different basins of attraction.

In the ideal cases, if a function has several distinct roots, every initial point
should converge to the nearest root applying iterative method, and conse-
quently, the basins boundaries should have smooth form. Nevertheless, for
concrete functions and multiple iterative schemes, the dynamical behaviour of
the methods are not so predictable, the overlapping of the basins of attraction
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FIGURE 1. Basins of attraction of different methods for poly-
nomial p; (the first row: ZCJT(left), BAASAI1(middle),
BAASA2(right), the second row: KKSdA (left), SK(right), the
third row: NM1(left), NM2(middle), NM3(right))

is noticeable as well as the chaotic structure of the basins boundaries. Hence, it-
erative methods with less fractal ‘decorations’ along boundaries are considered
as more desirable ones.

The following functions with associated multiple roots and their multiplicity
are observed:

(1) pi(z) = (> =1} a1 =Lap = —-1,m =2,
(2) pa(z) = (23+422-10)3; a1 ~ 1.3652, ap 3 ~ —2.6826+4-0.3582, m = 3,
(3) p3(z) = (2* —2)% a1 = 0,03 = £1,m = 4.

In those examples, we consider the region [—3,3] x [—3,3] of the complex
plane, with 256 x 256 equally distributed initial points. We picture the dynami-
cal planes for every method described in the previous sections where each inital
point is colored associated to the root which it converges to. If the method does
not converge (here, this means that the distance after at most 100 iterations is
still greater than 107> to any of the roots), than that point is marked black.
The intensity of the color suggests the number of iterations (fewer iterations —
lower intensity).
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Table 8. The number of black points (in %) for p1,p2 and ps

method p1(z) p2(z) p3(z) total average
7ZCJT 0 1.794 1.448 1.081
BAASA1 0.003 0.027 0.018 0.016
BAASA2 1.511 0 0 0.504
KKSdA 0 0.397 0.366 0.254

SK 0.629 10.948 4.834 5.470

NM1 0 0 0 0

NM2 0 0 0.024 0.008

NM3 0 0 0 0

Tables 8, 9 and 10 show the computed values related to the depiction of the
basins of attraction given in Figures 1, 2 and 3. Table 8 displays the percentage
of the black points (out of 65536 starting points) for each graph. The values
displayed in Table 9 represent the average number of iterations per starting
point calculated without black starting points, which means that the average

FIGURE 2. Basins of attraction of different methods for poly-
nomial py (the first row: ZCJT(left), BAASA1(middle),
BAASA2(right), the second row: KKSdA(left), SK(right), the
third row: NM1(left), NM2(middle), NM3(right))
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FIGURE 3. Basins of attraction of different methods for poly-

nomial p3 (the first row:

ZCJT(left), BAASAI(middle),

BAASA2(right), the second row: KKSdA (left), SK(right), the
third row: NM1(left), NM2(middle), NM3(right))

does not take into account the number of iterations for inital points that do not
reach the neighborhood of any root within 100 iterations. Table 10 presents

the CPU time required for the depiction of each graph.

Table 9. The average number of iterations for pi, p2 and ps

method p1(2) p2(2) p3(z) total average
ZCJT 6.552 15.136 12.767 11.458
BAASA1 5.565 8.721 8.385 7.557
BAASA2 3.895 5.361 5.937 5.065
KKSdA 4.458 9.276 8.426 7.387

SK 11.179 20.128 15.625 15.644

NM1 6.609 7.794 5.353 6.585

NM2 3.568 3.959 5.177 4.235

NM3 3.577 5.347 5.166 4.697
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Table 10. The CPU time (in seconds) for p1,p2 and ps
method p1(z) p2(z) p3(z) total average
7ZCJT 1076.358 1527.498 1485.330 1363.062

BAASA1 1169.550 1317.174 1420.686 1302.470
BAASA2 1182.174 1258.020 1357.482 1265.892

KKSdA 1050.516 1402.170 1432.722 1295.136
SK 1204.392 1767.078 1632.984 1534.818
NM1 1032.780 1218.204 1298.514 1183.166
NM2 1021.500 1148.262 1288.422 1152.728
NM3 1051.200 1252.530 1310.922 1204.884

According to these results, all new methods are very competitive with the
previously developed methods. For example, methods NM2 and NM3 are the
best performers in terms of the total average of iterations, followed by BAASA2
and NM1. Note that NM1 and NM3 are the only methods without black initial
points. Furthermore, the best CPU time results are associated with the new
methods.

5. Conclusion

In this paper, we have considered a new optimal three-step iterative family
of multiple root finders and compared some special members of the family
to several recently published Newton-type optimal methods of eighth order.
The construction of the new iterative scheme is based on one function and
three derivative evaluations per iteration, which is a unique structure of the
algorithm of the eighth convergence order. The eighth-order is empirically
checked in the numerical section. The advantage of the proposed methods is
their good dynamical performace. For some special cases of the new family,
a dynamical analysis suggests better stability and wider basins of attraction
compared to existing methods.
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