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A CLASS OF EXPONENTIAL
CONGRUENCES IN SEVERAL VARIABLES

GEUMLAN CHOI AND ALEXANDRU ZAHARESCU

ABSTRACT. A problem raised by Selfridge and solved by Pomerance
asks to find the pairs (a,b) of natural numbers for which 2% — 2°
divides n® — n® for all integers n. Vajaitu and one of the authors
have obtained a generalization which concerns elements a1, ..., 0%
and B in the ring of integers A of a number field for which

k k

Z a; 3% divides Z ;2™ for any z € A.

i=1 i=1
Here we obtain a further generalization, proving the corresponding
finiteness results in a multidimensional setting.

1. Introduction

A problem raised by Selfridge (see Guy [1], problem B47) asks to find
the pairs (a, b) of natural numbers for which 2% —2° divides n® —n® for all
integers n. By using results of Schinzel [4] and Velez [6], Pomerance [2]
solved Selfridge’s problem. It turns out that there are exactly 14 pairs
(a,b), with a > b, which satisfy the above property. The problem was
also solved by Sun Qi and Zhang Ming Zhi in [5]. A more general
question has been investigated in [7]. Let K be a number field and let

A be its ring of integers. Choose nonzero elements oy, ..., and G in
A, 8 not a unit, and consider the set of k-tuples (ay,...,ax) of natural
numbers for which
k k
(1.1) Z a; 3% divides Z a; 2% for any z € A.
i=1 i=1
In order to avoid certain degenerate situations, when one does have
infinitely many solutions, in [7] only those k-tuples (ai,...,ax) have
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been considered for which

(1.2) D aip #£0,
€S

for any non empty subset S of {1,2,...,k}. Then it was shown in [7]
that there are only finitely many k-tuples (ai,...,ax) satisfying both
conditions (1.1) and (1.2) above. In case where K = Q or K is an
imaginary quadratic field one can strengthen the conclusion of the above
result. More precisely, it is shown in [7] that for such fields K, given
nonzero elements ag,...,ar € A there are only finitely many elements
B in A for which there exist natural numbers ay,...,ax, not all zero,
satisfying relations (1.1) and (1.2) above.

In the present paper we study a multidimensional version of the prob-
lem. For example, in the two dimensional case, one may ask for which
natural numbers a, b, ¢, d, with a > b and ¢ > d,

(1.3) (22—2%)(2°—2%) divides (n®—n®)(m°—m?) for any n,m € Z.

Here if we set m = 2, we see that (a,b) has to be a solution to the
original problem of Selfridge. Similarly, by letting n = 2 we find that
(c,d) also has to be a solution of that problem. On the other hand, if
both (a,b) and (c,d) are solutions to the problem of Selfridge, then a,
b, ¢, d will satisfy (1.3). It follows that (1.3) has exactly 196 solutions.
We are interested to see whether such a finiteness result holds in more
generality, where the polynomial P(n,m) = (n® — n®)(m® — m?) is re-
placed for instance by a polynomial P(n,m) which does not decompose
as a product of two polynomials of one variable each. The general two
dimensional problem we pose is the following. Let K be a number field

and let A be its ring of integers. Choose a k x | matrix (oi;)1<i<x with

135<1
entries in A, and two elements 3,7 € A. Then consider the set of pairs
(a,b) e N¥F x N, a = (ay,...,a;), b= (b1,...,b), for which

(1.4) Z aijﬂ“i'ybj divides Z a,'jz“"wbj for any z,w € A.
1<i<k 1<i<k
135< 1Z5<
The problem is to find circumstances under which (1.4) has only
finitely many solutions (a,b) € N¥ x N!. More generally, we con-
sider for any n an n-dimensional version of the problem. Thus we re-

place the matrix (oyj)1<i<k by a system of elements in A of the form
1<5<1
(0. in)1<is<k; and instead of the pair (B,7) we select an n-tuple

1<in<kn
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(B1,..-,Bn) of nonzero elements in A. Then we consider the set of
n-tuples (ay,...,an) € NF x N® x ... x N¥» a; = (aj,,...,a;x,) for
1 < j < n, such that
(1.5)
Z @iy, B - Bt divides Z Qy,in 2y Lo i

1<ii <k 1<in<k

1<iy <kn 1<in <kn
for any z1,...,2, € A. Generalizing (1.2), in what follows we will only
be concerned with those solutions (a,...,a,) to (1.5) for which
(1.6) D iy B B £ 0

(31,0180 )ES

for any nonempty subset S of {1,2,...,k1} x -+ x{1,2,...,kp,}. Then
we prove the following result.

THEOREM 1. Let A be the ring of integers in an algebraic number

field. Fix n and choose nonzero elements 3y, ..., 3, € A, none of them a
unit, and let oy, ;, € A, for 1 <41 <ky,...,1 <14, <k,. Then there
are only finitely many n-tuples (ay, ...,a,) € NF1 x ... x N¥~ satisfying

relations (1.5) and (1.6) above.
Again in some cases we can strengthen the result.

THEOREM 2. Let A be the ring of rational integers Z or the ring
of integers in an imaginary quadratic field. Fix n and choose nonzero
elements o4, ;, € A, for 1 < i3 < ky,...,1 < i, < k,. Then there
are only finitely many n-tuples (61,...,0,) with B; € A, j =1,...,n
for which there exists (ay,...,a,) € N* x ... x N* with none of the
tuples ay, ..., a, having all the components equal to zero, such that (1.5)
and (1.6) are satisfied.

2. Some lemmas

Fix a number field K and let A be its ring of integers. Here and
throughout the paper Norm(:) stands for Normg q(-). We first recall
some results from [7].

LEMMA 1. Let a,...,ar and 3 be nonzero complex numbers, with
|8l # 1. Then there exists a constant ¢ > 0, depending on oy, ..., o
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and (3, such that for any (as, .. .,a;) € N¥ satisfying (1.2) we have

k
Z ;3%

=1

This is Lemma 1 of [7].

> cmax {|B|*,...,|B|"}.

LEMMA 2. Let g(X) € A[X], 9(X) = Y%, ;X%, where oy # 0,
a1 >ap > -+ > ag, A(g) = [[*_,(a1 - a;), and denote by J(g) the ideal
of A generated by the set {g(z) : z € A}. Then for any prime ideal P
of A which divides J(g), at least one of the following holds true:

(i) P divides o3, or
(¢4) Norm(P)—1 divides A(g).

This is lemma 2 of {7].

LEMMA 3. Let ay,...,0x, a1,...,ak, 9(X), A(g) and J(g) be as in
Lemma 2. Then for any prime ideal P of A which divides J{(g), one has

vp (J(9))
1
= (1 + Norm(P) — 1

where vp (J(g)) and vp (a1 A(g)) denote the exponent of P in J(g) and
respectively in a1 A(g).

This is Corollary 1 in [7].
Next, we generalize the above results, as follows.

k-1
) (vp (01 A(g)) + Norm(P)) — Norm(P),

LEMMA 4. Let a5, with1 <41 < ky,...,1 < i, < ky, be complex
numbers, and let 31, ..., B, be nonzero complex numbers, with |3;| # 1
for 1 < j < n. Then there exists a real number ¢ > 0 such that for any
(ai1,...,a,) € NF1 x ... x N* gatisfying (1.6) we have

n
@1 | D i, BB > e [ [ max {1819, 18]}

1<i1<ky Jj=1

Proof. We proceed to prove the lemma by induction on n. For n =1
the statement reduces to Lemma 1 above. Let n > 1 and assume that
the statement holds for n—1. With ks, ..., k, fixed, we proceed to prove
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the lemma by induction on k1. In case k; = 1, the left hand side of (2.1)
reduces to

(2.2) B | DD e B B

1<in<ko

and the existence of the required constant ¢ > 0 follows by the induction
hypothesis. Let now k1 > 1 and assume that the statement holds for
k1 — 1. Denote

(23) S= " 0, B B

1<ii <k

Choose ¢* € {1,2,...,k1} such that

(24) as = m'a'X{aH? BRI 70’1]61}? .lf |,811 >1
mln{all""’a1k1}7 if lﬂll < 1.

In both cases we have

(2.5) |B1]* = max {|B1]*,...,|B1]|* 1 }.

Next, choose j* € {1,2,...,k1}, j* # ¥, such that |3;|%* is as large as
possible. Thus

(2.6 Byl = max{|By[ :1 < j < kG #17).

The idea is that if |3;|*1* is much larger than |31|?7*, then the sum of
terms with ¢; = ¢* on the right side of (2.3) will dominate the sum of
terms with iy # i*. To be precise, let us write S in the form

(2.7 S =51+ 5y,
where
- a2;. nin

(2.8) S1=07"" Y iy, B2 B

1<in<ks

1<in <kn
and

Qliq a2ig Anig,
(2.9) Sy = Z Bl Z Gy ,.in Py B

1<ii1 <k 1<ip<ke

£ e,
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By the induction hypothesis applied to the sum on the right side of (2.8)
we know that there is a constant ¢* > 0, depending on fs,..., 3, and
on the coeflicients a;« ;, . ;., such that

(2.10)

n
D e B B [ 2 [[max {18510, ..., 18;1%% }.

1<io<ko =2

Combining (2.10) with (2.5) and (2.8), we see that

(2.11) 151] > ¢ T max {I51°, .., 18| }

J=1
On the other hand, from (2.6) and (2.9) it follows that
(212) 12l D 1B 3 il Bl |l

1<ihi<h 1<iz <k

i 1<in<kn

n
< C|py|** [ max {I8;1%, ..., 18;1%% },

=2
where we denote
(2.13) C= Z |iy,... in -
1<ii<k
1<in<kn

We distinguish two cases. Assume first that
(214) C*I,B1|a1’* Z 20',31"1”*.

Then, from (2.11), (2.12) and (2.14) it follows that |S1| > 2|Ss|, so
S c* - a; Ak,
(2.15) S| = |21 —Q_H a‘X{lﬂJl Jl,"'?lﬁjl ]kJ}’
j=1

and hence (2.1) holds in this case, with ¢ = % Assume now that

(2.16) |G| < 20|y |45
Let
log (-2—9)
2.17 D= < ,
(2:17) [ log | 31|
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where [-] denotes the integer part. By (2.16) and (2.17) it follows that
(218) |a1,;* - alj*l < D.

By the definition of i* and j* we also know that ai;+ > ayj« if |51} > 1,
and a1+ < ayjx if [B1] < 1. Denote

(2.19) I
a1j* — Q14%, if |,81| < 1.

Then d is a non-negative integer, bounded by D. Now the point is that
for each fixed value of d, we may view the sum S, corresponding to
the n-tuple (a;,a,...,a,), as a sum corresponding to another n-tuple,
in which ag,...,a, are the same, while a; has one of its components
removed. More precisely, if |81| > 1 then we remove from a; the com-
ponent ay;+, and respectively if |31] < 1 then we remove from a; the
component aij«. Then we use (2.19) on the right side of (2.3), in or-
der to write S in terms of as,...,a, and the components of a; that
were not removed. Thus the same sum S, which was initially of type
ki X kg X - X kyn, can be viewed as a sum of type (k1 —1) X kg X - - - X ky,.
Obviously, in doing this, the new coefficients will depend on d. We may
use the induction hypothesis, and conclude that (2.1) holds for our sum
S, with a constant ¢ = ¢4 > 0 depending on d. We now choose ¢ to be
the smallest of the constants ¢y, for 0 < d < D, and this completes the
proof of the lemma. O

LEMMA 5. Let g(Xi1,...,X,) € A[Xy,...,Xyn], 9(X1,...,Xn) =
aliq

> i<ii<ky Py, in Xy - Xntm, whereky, ... kn > 1,011 #0,a51 >
ajo >+ > ajk, for1 < j <n, A(g) = [}, Hfiz(ajl —a;;), and denote
by J(g) the ideal of A generated by the set {g(z1,...,2n) : 21,...,2n €
A}. Then for any prime ideal P of A which divides J(g), at least one
of the following holds true:

(¢) P divides oy,. 1, or
(4) Norm(P)—1 divides A(g).

Proof. We prove the lemma by induction on n. For n = 1 the state-
ment reduces to the statement of Lemma 2 above. Let n > 1 and assume
that the statement holds for n — 1. Choose a polynomial g(Xy,...,Xy)
as in the statement of the lemma, and let P be a prime ideal of A which
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divides J(g). We write g(Xi,...,X,) as a polynomial in Xy, with coef-
ficients in A [Xs,...,X,], say

(2.20)
9(X1,. - Xn) = ha(Xa, .., Xn) X + hy(Xa, ., Xn) X7V 4 -
44 hkl(Xg, e ,Xn)Xflkl'

Next, we assign arbitrary values za,..., 2, € A to the variables Xo,...,
Xn, and consider the polynomial in one variable

k1
(2.21) F(X) =g(X1,22,-.,2) = D hilzz, ..., 20) XTH
i=1

We know that P divides f(z1) for any 2, € A, thus P divides J(f).
Applying Lemma 2 to the polynomial f(X3), we find that at least one
of the following holds true:

(2.22) P divides hy(z2,...,2n)
for this particular choice of 2o, ..., z,, or
(2.23) Norm(P) —1 divides A(f).

If (2.23) holds, then we are done, since obviously A(f) divides A(g).
Suppose now that (2.23) fails. Then (2.22) will hold true for any choice
of 29,...,2, in A. In this case P will divide the ideal J(h;) generated
by the set {h1(22,...,2n) : 22,...,2, € A}. Applying the induction hy-
pothesis to the polynomial h;(Xa,...,X,), we see that at least one of
the following holds true:

(2.24) P divides aj,.3, or
(2.25) Norm(P) —~ 1 divides A(hz).
Here A(hy) divides A(g), and the lemma is proved. a

LEMMA 6. With notation as in Lemma 5, for any prime ideal P of
A which divides J(g) one has

ki+-tkn—n
(2.26)  wp(J(g)) < <1 + Wm(lﬁ)—j)

- (vp (a1,..1A(9)) + Norm(P)) — Norm(P).
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Proof. We prove the lemma by induction on n. For n = 1 the state-
ment reduces to Lemma 3 above. Let n > 1 and assume that the state-
ment holds for n — 1. Choose a polynomial g(Xi,...,X,) as in the
statement of the lemma, and let P be a prime ideal of A which di-
vides J(g). As in the proof of Lemma 5 we write g(X1,...,X,) as a
polynomial in X; with coefficients in A [X,..., X,],

k1
(2.27) 9(X1,.. ., Xn) =D hi(Xa,..., Xn) X,
i=1
Then, for any zo,...,2, € A, consider the polynomial in one variable
k1 .
(2.28) F(X1) = g(X1, 22, 20) = 3 _ hilza, ., za) X0,
i=1

We know that P divides the ideal J(f) generated by the set {f(z1) :
z1 € A}. Applying Lemma 3 to the polynomial f(X;), we obtain

1 k-1
(2.29) ve(J(f) = <1 + Norm(P) — 1)
- (vp (h1(22,...,20)A(f)) + Norm(P)) — Norm(P).

Evidently J(g) divides J(f). Thus vp(J(g)) < vp(J(f)), and com-
bining this with (2.29) we find that

1 k1—1

k1—-1
+ <1 + Wm(lfﬁ)_—?) vp(A(f))

k-1
+ (1+ W) vp(hi(22,...,2n))-

Since (2.30) holds for any zg,...,2, € A, and since the set

{h1(22,...,zn):ZQ,...,ZnEA}
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generates the ideal J(h1), we deduce that

1 k1—1

ki1—1
+ (1 + —Norm(lp) _ 1) up(A(f))

k1—-1
-+ <1 + N-(;I—‘In(l]DTI) ’l)p(J(hl))

Applying the induction hypothesis to the polynomial hi(Xa,...,Xy),
we have

1 k2+-+kn—(n—1)
(2.32) YPU()) S (1 * Norm(P) = 1)
- (vp (a1,...1A(h1)) + Norm(P)) — Norm(P).

Combining (2.31) with (2.32) and using the fact that

Alg) = A(HA(m),
which implies vp(A(g)) = vp(A(F)) + vp(A(h1)), we derive

(233) vp(J(g)) < (( — P)_l)kl 1 )Norm(P)
Som(P 1)

k1—1
vp(A(f))

) k1+ko+-+kn—n

+( Norm(P) 1

+ (1 + Norm(P) — 1
- (vp (o, 1A(R1)) + Norm(P))

1 k1—1
- (1 + Norm(P) — 1) Norm(P)

1 kit tkn—n
( Norm(P) — 1)

- (vp (a1,..,1A(h)) + Norm(P))

1 k1—-1
+ (]. + W) ’UP(A(f)) - Norm(P)
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1 kit-otkn—n
<1+ —F—
- ( +Norm(P)—1)

- (vp (01,..,1A(g)) + Norm(P)) — Norm(P).
This completes the proof of Lemma 6. O

As in [7], we now take advantage of the fact that the right hand side
of (2.26), as a function of P, with A, ky,...,k, and g fixed, is bounded:
the coefficient of vp (a1, 1A(g)) is bounded by 2F1+-+*»=n " and the

Ky e
ﬁ) ' nm — z is bounded as x — co. Taking

these facts into account, we infer the following result.

function z +— (1 +

COROLLARY 1. There are integers l,l2 > 0, depending on ki, ..., k,
and A, such that, with the notations from Lemma 5, we have

vp(J(9)) < lavp (0a,..14(9))
for any prime ideal P for which vp(J(g)) > l1.

Combining Corollary 1 with Lemma 5, we obtain the following result,
which is a generalization of Proposition 2 from [7].

LEMMA 7. There are constants Iz, l,1s,lg > 0, depending on ki, .. .,
k, and A, such that for any g(X1,...,X,) as in Lemma 5, one has

g
Norm(J(g)) <l3 |Norm(a1,m,1)ll4 exp (l5alogloga> ,

where a = max{ai1,a21,--.,0n1,3}.

Proof. Let g(Xi,...,Xy) be as in Lemma 5. We decompose J(g) =
J1J2, where J; contains those primes P for which vp(J(g)) < L1, and J
contains those primes P for which vp(J(g)) > l;. Then form Corollary 1
it follows that Jo divides (alym,lA(g))l?. Therefore
(2.34)

Norm(Jz) < [Norm (a1,..1A(g))|2 = [Norm(au,..1)|" |A(g) 29

4
Note that |A(g)] < [T}, ‘1?{_1 < ghtthn=n and loga < a—ﬁ—mgbga’
uniformly in a for lg large enough. This clearly gives an upper bound
of the required type for Norm(.J2). Let now Jo =[] pis; P. Since J;
P prime
divides J(l)l, one has Norm(J;) < (Norm(Jp))"*. Thus in order to com-
plete the proof of the lemma, it remains to prove an upper bound of the
required type for Jy. To proceed, we first remove from Jy all the prime

divisors of 2, if there are any such divisors, and we also remove any prime
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divisor of &y, 1. Note that the norm of the product of all the removed
prime divisors is bounded by |[Norm(2a;, .. 1)|. Hence we are left with a
square free divisor of J(g), call it J3, which is relatively prime to 2a; .. 1.
Lemma 5 implies that for any prime divisor P of J3, Norm(P)—1 divides
A(g). Note that any positive integer equals Norm(P) — 1 for at most
[K : Q] prime ideals P in A. It follows that [[ pjj, (Norm(P)—1) di-
P prime

vides [I4a(g) dl5-Q, This last product equals A(g)%[K ‘Qoo(8(9)) | where
00(A(g)) denotes the number of divisors of A(g). For op(A(g)) one has
the well known upper bound (see Ramanujan [3])

00(A(g)) < cle)A(g) T 55w

for any fixed € > 0. Note also that since Norm(P) > 3 for any prime P
which divides J3, we have Norm(P) < (Norm(P) — 1), and hence

Norm(Js) < [[ (Norm(P)-1)%.
P|J3
P prime
By combining the above inequalities one obtains an upper bound of the
required type for Norm(J3), and the lemma is proved. O

3. Proof of Theorem 1

Proof. We prove the theorem by induction on n. For n = 1 the
statement reduces to Theorem 1 in [7]. Let n > 1 and assume that the
statement holds true for n — 1. Next, we proceed by induction on k;. If
k1 =1, then (1.5) says that

(3.1
i i P azq i
BYY Y nigiPtt oo B divides 5T D Griinz
1<iz<ks 1<ig <k,
1<in<kn 1< <kn
for any 21, 22,...,2, € A. In particular, if we set 22 = B2,...,2, = 0n,

from (3.1) it follows that B7'' divides 2{'! for any z; € A. We take
z1 = 1, then B7** divides 1, and since (; is not a unit it follows that
a11 = 0. Using this in (3.1), we find that

(3.2)

a2io Qi . . A2ig Ani
E Oy, inBy 2 -+ PBn™™  divides E Qg ine 2t 20"
1<ig<ko 1<iz<ks
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for any 22,...,2, € A. The induction hypothesis now shows that there
are only finitely many tuples (aq, ..., a,) satisfying the above conditions,
and this completes the proof in case k3 = 1. Let now k; > 1 and
assume that the statement of the theorem holds for k3 — 1. We order
the components ai1,. .., a1k, of the vector a; according to their size. To
make a choice, assume that we have a;; > aj2 > -+ > agx, . If at least
one of these inequalities is an equality, that is, if two of the integers
a1, @12, - - -,01k, are equal, then we are left with k; — 1 independent
integers, and the finiteness of the number of solutions follows from the
induction hypothesis. We may then assume in the following that we
have strict inequalities a;; > aj2 > - -+ > a1, . In order to complete the
induction step from ky — 1 to k1, which will also complete the proof of
the theorem, we start an induction argument with respect to k2. The
case ko = 1 is easily settled by a reasoning similar to the one employed
in the case k3 = 1, establishing analogs of relations (3.1) and (3.2)
in the process. Let now k3 > 1 and assume that the statement of
the theorem holds for k3 — 1. As before, we order the components of
the vector as according to their size. To make a choice, assume that
a1 > G2 > +++ > agk,. Again if at least one of these inequalities
is an equality, the statement of the theorem follows by the induction
hypothesis. We may then assume for the rest of the proof that we have
strict inequalities ag1 > ag2 > - -+ > agk,. Next, we proceed by induction
on ks, then on ky,..., and finally on k,. When we arrive at that stage
where one uses induction on k,,, we order the components of a,, according
to their size, say an1 > ang > -+ > ank,,. Then, arguing as before, we
may assume that these inequalities are strict, otherwise the statement
of the theorem holds by the induction hypothesis. Thus, in order to
complete the proof of the theorem, we are left with the case where

k1 >1,...,k, > 1, and we have strict inequalities a;1 > ajo > --- > aj;
for any 7 € {1,2,...,n}. We are then under the assumptions from
Lemmas 5, 6 and 7. Consider the polynomial
(3.3) 9(X1, o Xn) = ) e X X

1<i <k

1<in<kn

By Lemma 7 it follows that
1
(34)  Norm(J(g)) < ls Norm(ax,1)|" exp (15—6—) ,

where a = max{a11,a21,...,a,1,3}, J(g) is the ideal of A generated
by the set {g(z1,...,2n) : 21,...,2, € A}, and Il3,l4,15,ls are positive
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constants which depend on ki,...,k, and the ring A. From (1.5) we
know that

(3.5) = > a8 B

1<i1<k1

is a divisor of J(g). It follows that Norm(S) divides Norm(J(g)), and
from (3.4) we derive

' lg
(3.6) |[Norm(S)| < I3 |Norm(0q,,_,,1)|l‘1 exp (l5alosloga) .

Let now o be any embedding of K into C. By applying Lemma 4 to
a(S) it follows that there exists a constant ¢, > 0, which depends on
the numbers o(81),...,0(Bs) and o(a,,. 4,) with 1 <43 < kqp,...,1 <
in < ky, such that

(3.7) (S ={ D (0, i) (B) - o (Br) %

> ¢o [ [ max{lo(8)1", ..., |o(8;)|** }.

J=1

Multiplying the inequalities (3.7) for all the embeddings o of K into C,
we derive

n

(3.8) |Norm(S)| > (Hca) HH a,x{|a B, ... |o(B)|%" }

j=1

> (Hca) [] Norm(,) .
o 1=1

By combining (3.8) with (3.6) we obtain
(3.9)

n i
Co Norm(3;)|%* < I3 |Norm(a1...1)|" exp l5a@6@-g_a )
J 3 bl

qQ

Since |Norm(B;)| > 1 for 1 < j < n, from (3.9) one clearly obtains
an upper bound for a, which is also an upper bound for each of the
numbers a;; with 1 < j < n. It follows that there are only finitely many
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solutions (ay,...,a,) to our problem, and this completes the proof of
the theorem. 0

4. Proof of Theorem 2

Proof. We prove the theorem by induction on n. For n = 1 the
statement reduces to Theorem 2 from [7]. Let n > 1 and assume that
the statement holds true for n — 1. As in the proof of Theorem 1, we
now use induction on k;. Let ky; = 1, and choose £1,...,08, € A for
which there exists (ai,...,a,) € N¥ x ...NF» with a; # (0, ...,0) for
1 < j < n, such that (1.5) and (1.6) are satisfied. Then (1.5) reduces
to (3.1), which further implies (3.2) on the one hand, and on the other
hand it implies that 87! divides 1. Since a1; > 1, it follows that S
is a unit in A. The group of units of A is finite, so there are only
finitely many choices for 8;. Also, from (3.2) it follows by the induction
hypothesis that there are only finitely many (n — 1)-tuples (B2,...,5n)
with the required properties. This proves the statement of the theorem
in case k; = 1. Let now k; > 1 and assume that the statement holds
for k&1 — 1. Again we order the components of a; according to their
size, say a11 > a1z 2> -+ > ajk,- If at least one of these inequalities
is an equality, then we may use the induction hypothesis to obtain the
desired result. Thus we may assume in what follows that a1 > a12 >
“++ > aig,. As in the proof of Theorem 1, we continue the reasoning by
using induction on kg, then on k3, . . ., and lastly on k,. In the end we are
left with the case when kj > 1,...,k, > 1 and one has the inequalities
aj1 > ajz > -+ > ajr, > 0 for 1 < j < n. We need to show that there
are only finitely many n-tuples (01, ..., 3,) for which there exist tuples
a; = (a;1,---,q5k;), 1 < j < n as above, satisfying (1.5) and (1.6). Let

a1 an;
f(Xl,...,Xn) = E ail,---,inXl o X,
1<ii<ka

We claim that there exists an n-tuple (ry,...,7r,) with r; € {1,2,...,
2%-11 4 = 1,...,n such that f(ry,...,7,) # 0. This holds true for

ari;

n = 1. For, in this case f reduces to f(X1) = > 1< <k, @i X
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Consider the nonzero Vandermonde determinant

1 e 1
2011 281k,
2(k1—'1)a11 . . 2(k1—.1)a1k1
We add its columns multiplied by ay,...,a;, and obtain a new col-

umn that does not vanish and has f(1), f(2),..., f(2¥171) as entries.
Thus f(r) # 0 for some r € {1,2,...,2¥171}. Assume now that the
above statement holds true for n — 1 and suppose that f(ry,...,m,) =0
for any (ry,...,™) € {1,2,...,2871} x ... x {1,2,...,2k="1} Fix
(r1,...,7n—1). Then for any r, € {1,2,...,2%k"1}

h(rn) := f(ri,...,"n=1,"n) = Z A; rlmin =0,

1<in <kn
where
— § : a1y n—1li,_
Ain - azl’“'ﬂnrl T ,rn—l N
1<i1 <k
1$in:i.ékn—l

We now apply the case n = 1 to h{ry,). It follows that for each (rq,...,
Tn—l) € {1’2’ T ’2k1_1} X X {172, e ,2kn~1}7

iy An—1i,_1
Ain(rl,---,rn—l) = E Qiy,inT1 Tt =0

1S7:n—lskn—1

This contradicts the induction hypothesis. Hence f(ry,...,rn) # 0
for some (r1,...,7,) € {1,2,...,2871} x ... x {1,2,...,2F=1} which
proves the claim. Next, let us remark that since f(81,...,08,) divides
f(r1,...,rn) and since in the ring A under consideration the absolute
value of any nonzero element of A is > 1, we have |f(81,...,8.)| <
|f(r1,...,7)|. Note that the condition (1.6) implies that

aq;
Z ot 10,10 L #0

1<i; <k
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forany I =1,...,n. It is clear that

1<11<k1
1<in <kn
(4.1) e L S T |
1<ii<k
1<in<kn
On the other hand if for allt =1,...,n,
B> —2 S el
loa,... 1]

then

(42) If(ﬂl? ) 7/8n)| 2 |al,...,1||ﬁ1|a11 e lﬂn‘anl
— Y i 1By By

1<ii<ka

1<, <kn
(i1 yerrin) (L, 1)

> o, 1llBa]* - | Bl

_ 1B1]%11 - - - | B Z |y, i

|6 1<ir <k

1<ip <kn
(i1mmrin)A(1,1)

S lon,.. 1]} B - | B ®

(4.3)

- 2
Note that if
2
18] > gmax{ki,....kn} Z |, .. in | = o | Z oy i
1<ii <k Lol <ii<ing
1<in <kn 1<in <kn,

for all ¢ = 1,...,n, then the bound from (4.2) becomes larger than
the bound from (4.1), and we obtain a contradiction. Hence |3;| <
omax{k,....kn} > 1<ii<k; |0y, | forsomei =1,...,n. To make a choice,
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we assume that this happens for ¢ = n. Let
M = gmex{ki.kn} Z |ai1,}..,’in .

Thus |Bn| < M. Note that there are only finitely many elements in A
of absolute value less than M. Next, we provide foreach¢=1,...,n an
upper bound for |3;|. Fix B, and let

Jn(B1, .., Bn-1) i= F(B1,y---, Pn)-
Then

(13T An—11,,
fn(ﬂl)"')ﬂn—l) = Z A’il,---;in—l/Bl 1 .'.IBn—-l " 17

1<in-1<kn—1

Where Ailr--yin—l = le'[«nskn ailv'-'vinlg‘gnin e A' By replaCing ail"“’in by
A;, .. in_; in the above argument, we deduce that there exists a number

M1(By) depending on [(3,, such that not all the numbers |51}, ..., |Bn-1]
are larger than My(63,). Let M1 = max{M1(6,) : |Bn| < M}. Thus at
least one of the numbers |B1],...,|Bn~1| is less than M;. Without any

loss of generality we may assume that |B,—1| < M;. We now fix Gy,
Bn-1, and let frn_1(61,...,0n-2) :== f(B1,...,0n). Then it follows that
there exists M2(0n, Bn—1) such that not all the numbers |51], ..., |Bn-2|
are larger than My(8p, Bn—1). Let

My = max {Ma(Bn, Bn-1) : |Bn] < M, |Bn—1| < M1}.

Then at least one of |81, ..., |Bn-2| is less than My. Without any loss of
generality we may assume that |8,—2| < Ms. By repeating the same
argument, we conclude that there are M, M;, M, ..., M1 > 0
such that any solution (8i,..., ) satisfies the inequalities |5,| < M,
|Bn—1| < Mi,...,|B1] < Mp—1. We conclude that there are only finitely
many n-tuples (51, ..., ) satisfying the conditions from the statement
of the theorem. O
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