• Title/Summary/Keyword: Algebraic operator

Search Result 53, Processing Time 0.023 seconds

SOME INVARIANT SUBSPACES FOR SUBSCALAR OPERATORS

  • Yoo, Jong-Kwang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1129-1135
    • /
    • 2011
  • In this note, we prove that every subscalar operator with finite spectrum is algebraic. In particular, a quasi-nilpotent subscala operator is nilpotent. We also prove that every subscalar operator with property (${\delta}$) on a Banach space of dimension greater than 1 has a nontrivial invariant closed linear subspace.

ON LOCAL SPECTRAL PROPERTIES OF GENERALIZED SCALAR OPERATORS

  • Yoo, Jong-Kwang;Han, Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.305-313
    • /
    • 2010
  • In this paper, we prove that if $T{\in}L$(X) is a generalized scalar operator then Ker $T^p$ is the quasi-nilpotent part of T for some positive integer $p{\in}{\mathbb{N}}$. Moreover, we prove that a generalized scalar operator with finite spectrum is algebraic. In particular, a quasi-nilpotent generalized scalar operator is nilpotent.

ALGEBRAIC SPECTRAL SUBSPACES OF GENERALIZED SCALAR OPERATORS

  • Han, Hyuk
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.617-627
    • /
    • 1994
  • Algebraic spectral subspaces and admissible operators were introduced by K. B. Laursen and M. M. Neumann in 1988 [L88], [N]. These concepts are useful in automatic continuity problems of intertwining linear operators on Banach spaces. In this paper we characterize the algebraic spectral subspaces of generalized scalar operators. From this characterization we show that generalized scalar operators are admissible. Also we show that doubly power bounded operators are generalized scalar. And using the spectral capacity we show that a generalized scalar operator is decomposable. Then we give an example of an operator which is not admissible but decomposable.

  • PDF

WEAKLY WELL-DECOMPOSABLE OPERATORS AND AUTOMATIC CONTINUITY

  • Cho, Tae-Geun;Han, Hyuk
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.347-365
    • /
    • 1996
  • Let X and Y be Banach spaces and consider a linear operator $\theta : X \to Y$. The basic automatic continuity problem is to derive the continuity of $\theta$ from some prescribed algebraic conditions. For example, if $\theta : X \to Y$ is a linear operator intertwining with $T \in L(X)$ and $S \in L(Y)$, one may look for algebraic conditions on T and S which force $\theta$ to be continuous.

  • PDF

ALGEBRAIC SPECTRAL SUBSPACES OF OPERATORS WITH FINITE ASCENT

  • Han, Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.677-686
    • /
    • 2016
  • Algebraic spectral subspaces were introduced by Johnson and Sinclair via a transnite sequence of spaces. Laursen simplified the definition of algebraic spectral subspace. Algebraic spectral subspaces are useful in automatic continuity theory of intertwining linear operators on Banach spaces. In this paper, we characterize algebraic spectral subspaces of operators with finite ascent. From this characterization we show that if T is a generalized scalar operator, then T has finite ascent.

A NOTE ON A FINITE TRIANGULAR OPERATOR MATRIX

  • Ko, Eun-Gil
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.561-569
    • /
    • 1997
  • In this paper we shall characterize a finite triangular operator matrix with M-hyponormal operators on main diagonal. This shows in particualr that such an operator is subscalar operator. As a corollary, we get that every algebraic operator is subscalar.

  • PDF

ON PREHERMITIAN OPERATORS

  • YOO JONG-KWANG;HAN HYUK
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.53-64
    • /
    • 2006
  • In this paper, we are concerned with the algebraic representation of the quasi-nilpotent part for prehermitian operators on Banach spaces. The quasi-nilpotent part of an operator plays a significant role in the spectral theory and Fredholm theory of operators on Banach spaces. Properties of the quasi-nilpotent part are investigated and an application is given to totally paranormal and prehermitian operators.

DIVISIBLE SUBSPACES OF LINEAR OPERATORS ON BANACH SPACES

  • Hyuk Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In this paper, we investigate the properties related to algebraic spectral subspaces and divisible subspaces of linear operators on a Banach space. In addition, using the concept of topological divisior of zero of a Banach algebra, we prove that the only closed divisible subspace of a bounded linear operator on a Banach space is trivial. We also give an example of a bounded linear operator on a Banach space with non-trivial divisible subspaces.

CONTINUITY OF LINEAR OPERATOR INTERTWINING WITH DECOMPOSABLE OPERATORS AND PURE HYPONORMAL OPERATORS

  • Park, Sung-Wook;Han, Hyuk;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 2003
  • In this paper, we show that for a pure hyponormal operator the analytic spectral subspace and the algebraic spectral subspace are coincide. Using this result, we have the following result: Let T be a decomposable operator on a Banach space X and let S be a pure hyponormal operator on a Hilbert space H. Then every linear operator ${\theta}:X{\rightarrow}H$ with $S{\theta}={\theta}T$ is automatically continuous.

  • PDF