References
- I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
- H. G. Dales, P. Aiena, J. Escmeier, K. B. Laursen and G. A. Willis, Introduction to Banach algebra, Operators and Harmonic Analysis, Cambridge University Press, Cambridge, 2003.
- C. Davis and P. Rosenthal, Solving linear operator equations Can. J. Math. 26 (1974), 1384-1389. https://doi.org/10.4153/CJM-1974-132-6
- R. Harte, On local spectral theory II, Functional Analysis, Approximation and Computation 2 (2010), 67-71.
- B. E. Johnson and A. M. Sinclair, Continuity of linear operators commuting with continuous linear operators II, Trans. Amer. Math. Soc. 146 (1969), 533-540. https://doi.org/10.1090/S0002-9947-1969-0251564-X
- K. B. Laursen, Algebraic spectral subspaces and automatic continuity, Czechoslovak Math. J. 38 (1988), no. 113, 157-172.
- K. B. Laursen and M. M. Neumann, Decomposable operators and automatic continuity, J. Operator Theory 15 (1986), 33-51.
- K. B. Laursen and M. M. Neumann, An Introduction to local spectral theory, Oxford Science Publications, Oxford, 2000.
- K. B. Laursen and P. Vrbova, Some remarks on the surjectivity spectrum of linear operators, Czechoslovak Math. J. 39 (1989), no. 114, 730-739.
- T. L. Miller, V. G. Miller, and M. M. Neumann, Spectral subspaces of subscalar and related operators, Proc. Amer. Math. Soc. 132 (2003), 1483-1493.
- P. Vrbova Structure of maximal spectral spaces of generalized scalar operators Czechoslovak Math. J. 23 (1973), no. 98, 493-496.
- P. Vrbova, On the spectral function of a normal operator, Czechoslovak Math. J. 23 (1973), no. 98, 615-616. https://doi.org/10.1007/BF01593911
- P. Vrbova, Algebraic spectral subspaces, Czechoslovak Math. J. 38 (1988), no. 113, 342-350.