DOI QR코드

DOI QR Code

ALGEBRAIC SPECTRAL SUBSPACES OF OPERATORS WITH FINITE ASCENT

  • Han, Hyuk (Department of Liberal Arts Kongju National University)
  • Received : 2016.09.28
  • Accepted : 2016.10.17
  • Published : 2016.11.15

Abstract

Algebraic spectral subspaces were introduced by Johnson and Sinclair via a transnite sequence of spaces. Laursen simplified the definition of algebraic spectral subspace. Algebraic spectral subspaces are useful in automatic continuity theory of intertwining linear operators on Banach spaces. In this paper, we characterize algebraic spectral subspaces of operators with finite ascent. From this characterization we show that if T is a generalized scalar operator, then T has finite ascent.

Keywords

References

  1. I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
  2. H. G. Dales, P. Aiena, J. Escmeier, K. B. Laursen and G. A. Willis, Introduction to Banach algebra, Operators and Harmonic Analysis, Cambridge University Press, Cambridge, 2003.
  3. C. Davis and P. Rosenthal, Solving linear operator equations Can. J. Math. 26 (1974), 1384-1389. https://doi.org/10.4153/CJM-1974-132-6
  4. R. Harte, On local spectral theory II, Functional Analysis, Approximation and Computation 2 (2010), 67-71.
  5. B. E. Johnson and A. M. Sinclair, Continuity of linear operators commuting with continuous linear operators II, Trans. Amer. Math. Soc. 146 (1969), 533-540. https://doi.org/10.1090/S0002-9947-1969-0251564-X
  6. K. B. Laursen, Algebraic spectral subspaces and automatic continuity, Czechoslovak Math. J. 38 (1988), no. 113, 157-172.
  7. K. B. Laursen and M. M. Neumann, Decomposable operators and automatic continuity, J. Operator Theory 15 (1986), 33-51.
  8. K. B. Laursen and M. M. Neumann, An Introduction to local spectral theory, Oxford Science Publications, Oxford, 2000.
  9. K. B. Laursen and P. Vrbova, Some remarks on the surjectivity spectrum of linear operators, Czechoslovak Math. J. 39 (1989), no. 114, 730-739.
  10. T. L. Miller, V. G. Miller, and M. M. Neumann, Spectral subspaces of subscalar and related operators, Proc. Amer. Math. Soc. 132 (2003), 1483-1493.
  11. P. Vrbova Structure of maximal spectral spaces of generalized scalar operators Czechoslovak Math. J. 23 (1973), no. 98, 493-496.
  12. P. Vrbova, On the spectral function of a normal operator, Czechoslovak Math. J. 23 (1973), no. 98, 615-616. https://doi.org/10.1007/BF01593911
  13. P. Vrbova, Algebraic spectral subspaces, Czechoslovak Math. J. 38 (1988), no. 113, 342-350.