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DIVISIBLE SUBSPACES OF LINEAR OPERATORS ON
BANACH SPACES

Hyuk HAN

ABSTRACT. In this paper, we investigate the properties related to
algebraic spectral subspaces and divisible subspaces of linear opera-
tors on a Banach space. In addition, using the concept of topological
divisior of zero of a Banach algebra, we prove that the only closed
divisible subspace of a bounded linear operator on a Banach space
is trivial. We also give an example of a bounded linear operator on
a Banach space with non-trivial divisible subspaces.

1. Algebraic spectral subspaces of linear operators

Throughout this paper we shall use the standard notions and some
basic results on the theory of operator theory and functional analysis.
Let X be a Banach space over the complex plane C and let L(X) denote
the Banach algebra of all bounded linear operators on a Banach space X.
Given an operator T € L(X), Lat(T') denotes the collection of all closed
T-invariant linear subspaces of X, and for Y € Lat(T), T|Y denotes
the restriction of 7" on Y, and o(T'), p(T) denote the spectrum and the
resolvent set of T', respectively.

Let T be a normal operator on a Hilbert space H. For a closed
subset F' of C, consider the corresponding spectral projection E(F).
Since o(T|E(F)H) C F, we have

(T — NE(F)H = E(F)H for all A ¢ F.

One can show that this relation actually characterizes the spaces E(F)H.
Such subspaces may be considered in a more general situation. It turns
out that these subspaces are useful in the study of the local spectral
theory.
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DEFINITION 1.1. Let T : X — X be a linear operator on a Banach
space X. Let F' be a subset of the complex plane C. Consider the class
of all linear subspaces Y of X which satisfy (I'—\)Y =Y for all\ ¢ F,
the algebraic linear span Ep(F') of all such subspaces Y of X is called
an algebraic spectral subspace of T.

By the definition of the algebraic spectral subspace, it is clear that
ET(Fl) - ET(FQ) for Fl - FQ.

Let A € L(X) be with AT = T'A. For a given subset F' of C and
A ¢ F, we obtain

(T — N)AEp(F) = A(T — \)Ep(F) = AEp(F).
By the maximality of Ep(F'), we have
AEr(F) C Ep(F).

Hence the space Ep(F') is a hyper-invariant subspace of 7'. That is, if
TS = ST then Ep(F) is a invariant subspace of S. We also note that

Ep(F) = Er(Fno(T)),
where o(7T) is the spectrum of T

LEMMA 1.2. The space Ep(F) is the union of all sets M C X such
that M C (T'— A\)M for all A ¢ F.

Proof. Denote by Z the union of all sets M with M C (T — \)M
for all A ¢ F. Then Z is a linear subspace of X with the property that
ZC(T—MNZ forall \¢F.

On the other hand, applying the operator T'— A to both sides of the
above inclusion we get
(T—NZC(T—-N[(T—-XNZ] forall X\¢F.
Hence, the set (T'— A\)Z has the given property, and we have
(T—XNZCZ forall A\¢ F

by the definition of Z. Thus we have shown that (T'— \)Z = Z for
all A ¢ F. Since Ep(F) is the largest linear subspace of X with this
property, we have

Z C Ep(F).
But the inclusion Ep(F) C Z is obvious. Therefore, Ep(F)=2. O
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ProPOSITION 1.3. Let F' be a subset of C. If A\g € F, then
(T — o)~ (Er(F)) = Ep(F).

Proof. Let M = (T — Xo)"Y(Er(F)). To prove M C Ep(F), it
suffices to show that

M C(T—\M foral A¢F.

To show this, take an arbitrary x € M and A ¢ F. Since (T — A\g)z €
Ep(F), it follows that

(T —Xo)x = (T — Ne for asuitable e € Ep(F).

From (T — )\0); — e)\ = e € Ep(F) and the definition of M, we obtain
0—
x—e
M.
No— A C

Also we obtain
(T—=Ne=(T—X)x=[AN=Xo)+ (T —N)]x.
Thus we have the following equality:

r—e
=(T—-A .
z=( )%
Hence z € (T — A\)M. Therefore,
M C Er(F).

Since the space Ep(F') is invariant with respect to T, the reverse in-
clusion is clear. O

PROPOSITION 1.4. Let F be a subset of C. Then

Er(F) = (1] Er(C\ {A}).

AEF
Proof. Let
P = ﬂ Ep(C\{A}).
AEF
Since Ep(F) C Ep(C\ {A}) for all A ¢ F, we obtain
Er(F)CP.

To prove the reverse inclusion it is enough to show that

PC(T—XP foral X¢F.
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To see this, let p € P and p ¢ F be given. Since p € P C Ep(C\ {u}),
we have

p= (T —p)p for asuitable p' € Ep(C\ {u}).
Now take an arbitrary A ¢ F with A # u. Since p € C\ {\} and
(T — p)p' =p € Ep(C\ {\}), we have
P € Er(C\{\})
by Proposition 1.3. Thus p’ € P and the proof is complete. ]

PropPOSITION 1.5. Let {F,} be a family of subsets of C. Then

Er((\Fa) =) Er(Fo).

Proof. By Proposition 1.4, we have

N Er(Fa) =) [ Er(C\{A})

o A¢F,

= ﬂ Er(C\ {A})

AEU(C\Fa)

= ] Er(C\{\})

AENFa

= Br([) Fa).

It is clear from the definition that
Er(F)C (] (T-N"X.
A¢FneN

For a linear operator T' which has no eigenvalues, we will show that
the above inclusion becomes in fact an equality. For example, since
shift operators and Volterra operators have no eigenvalues, the algebraic
spectral subspaces of these operators can be represented by the right
hand side of the above inclusion.

PROPOSITION 1.6. If T'€ L(X) has no eigenvalues, then

Er(F)= (] @T-N"X
A¢FneN
for any subset F of C.
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Proof. Suppose that A ¢ F. Let x € )
n € N, there is x,, € X such that

x=(T—\)"z,.
Since T'— X is one to one, we have
1= (T —=Nag= (T —N2x3=....

neN

Thus
zi e () (T=N"X.
neN
But = (T — \)z; and we get

() (T - XX C(T-N[[)(T-N"X].

neN neN
By Lemma 1.2,
() (T -N"X CEr(C\{\}) forall A¢F.
neN

Since Er(-) preserves an arbitrary intersection, we have

| (T-N"XC ) Er(C\{\})

A¢FneN AEF
= Ep( ﬂ C\{\})
AEF
— Er(F).

(T — \)"X.
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For each

O]

In general Ep(F) need not be closed. But the closedness of Ep(F)
is closely related to automatic continuity theory of intertwining linear

operators on Banach spaces.

2. Divisible subspaces of linear operators

Now we introduce the divisible subspace of operators on a Banach
space. In the theory of automatic continuity, it is open crucial to exclude
the existence of non-trivial divisible subspaces, because their presence

tends to preclude the desired continuity conclusions.

DEFINITION 2.1. A linear subspace Z of X is called a T-divisible

subspace if
(T —X\)Z =2 forall \eC.
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It is clear that Ep(() is precisely the largest T-divisible subspace
of X. Many important operators do not have non trivial divisible sub-
spaces. For example, hyponormal operators on Hilbert spaces do not
have non-trivial divisible subspaces.

Let C[x] denote the ring of polynomials with complex coefficients
in an indeterminate x. We regard X as C[x]-module via the linear
operator T, that is, if p € C[x] we define p-x by p-x = p(T)z. By the
fundamental theorem of algebra, elements in C[x] may be factorized
into linear factors. Thus, Z is T-divisible if and only if p-Z = Z
for all non zero p € Cl[x], and so Z is T-divisible if and only if Z
is divisible as a C[x]-module. Since the ring C[x] is a principal ideal
domain, a C[x]-submodule Z is divisible if and only if it is injective
C[x]-submodule.

DEFINITION 2.2. Let A be bounded linear operator on a Banach
space X. Then A is sad to be a topological divisisor of zero if there is a
sequence By, with ||B,|| =1 for all n € N, such that

lim ||[BnA| = lim [|AB,|| = 0.
n—o0 n—o0

ProrosITION 2.3. Let T' be a bounded linear operator on a Banach
space X, and let A be a boundary point of the spectrum of T'. Then
T — X is a topological divisior of zero.

The proof of above proposition is found in [3]. We now present that
there is no non-trivial closed T-divisible subspace of a bounded linear
operator T' on a Banach space.

THEOREM 2.4. Let T € L(X). If Z is a closed T-divisible subspace
of a Banach space X, then Z = {0}.

Proof. Let \ € 00(T|Z), where 9o(T|Z) denotes the boundary of
the spectrum of T restricted to Z. By Proposition 2.3, there exists a
sequence (T,) of linear operators in Z with ||7,|| =1 for all n € N
and T,,(T—)\) — 0. Since (T'—\)Z = Z, by the open mapping theorem,

kB C (T —\)B for some k>0

where B is the unit ball in Z. For sufficiently large natural number n
with | T,(T — \)|| < &, we have

kT,B C To(T — \)B C gB.

Then T,B C 1B, which contradicts the assumption that ||T,[| =1. O
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PROPOSITION 2.5. Let T' € L(X) and let M be the maximal T-
divisible subspace of X. Then M is characterized by M being the
maximal subspace with respect to

(T—MNM =M forall \eo(T).

Proof. Let M be the maximal subspace for with respect to (7" —
MM =M for all A € o(T). It is enough to show that (T'— pu)M = M
for all p € p(T'), where p(T') denotes the resolvent set of T'. For each
nep(T)

(T = N)(T = )M = (T = ) (T = )M
=(T—p)'M
for all A\ € o(T), it follows that (T — u)"*M C M by the maximality
of M. Hence we have
M = (T = p)(T —p)™'M C (T — )M
C(T-A+AN—p)M

-

=

O]

We present a compact and quasi-nilpotent operator 7 € L(X) on a
Banach space X such that T has a non-trivial divisible subspace.

EXAMPLE 2.6. We consider the Volterra operator T on C[0, 1] defined
by
(Tf)(s) :/ f(t)dt for all f e C[0,1] and s € [0,1].
0

Then T is both compact and quasi-nilpotent operator on C[0, 1], and T
has the following non-trivial divisible subspace

Y ={feC®0,1]: f®0)=0 forall k=0,1,2,...}.
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