• 제목/요약/키워드: Algebraic method

검색결과 613건 처리시간 0.027초

Robust H\ulcorner Control for Delayed System with Time-Varying Norm-Bounded Parameter Uncertainty

  • Kim, Jong-Hae;Jeung, Eun-Tae;Park, Hong-Bea
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.33-38
    • /
    • 1996
  • In this paper, we present a robust H\ulcorner control design method for parameter uncertain systems that have delay in both state and control input. Through a certain algebraic Riccati inequality approach, a state feedback controller is obtained. The proposed state feedback controller stabilizes parameter uncertain delay systems and guarantees disturbance attenuation within a prescribed level. An illustrative example is given to demonstrate the results of the proposed method.

  • PDF

Generalized AbS 구조를 이용한 4kb/s ACELP 음성 부호화기의 설계 (Design of a 4kb/s ACELP Codec Using the Generalized AbS Principle)

  • 성호상;강상원
    • 한국음향학회지
    • /
    • 제18권7호
    • /
    • pp.33-38
    • /
    • 1999
  • 본 논문에서는 generalized analysis-by-synthesis (AbS) 개념을 algebraic CELP 부호화기에 도입한 새로운 4kb/s 음성 부호화기를 설계하였다. 전체적인 구조는 G.729를 부분적으로 이용하였고, line spectrum pair (LSP) 양자화기와 적응코드북 및 여기코드북을 4kb/s 전송속도에 맞게 새로이 설계하였으며, 20㎳ 프레임 크기와 5㎳ lookahead를 고려해서 총 25㎳의 알고리즘 전송지연을 갖는다. 제안된 방식은 일반적인 AbS방식을 사용하는 CELP구조의 음성 부호화기가 4kb/s이하의 전송률에서 성능이 급격하게 떨어지는 단점을 보완하기 위해 저속에서 좋은 특성을 보이는 generalized AbS구조를 사용하였다. 그리고 LPC 계수는 LSP 계수로 변환한 후 예측 2단 VQ를 통해서 양자화하며, 여기 신호는 음질 저하를 최소화하며 복잡도를 감소시킨 shift 방식의 대수적 고정 코드북 구조를 사용하고, 적응코드북과 여기코드북의 이득은 VQ로 양자화 하였다. 본 논문에서 제시된 4kb/s 음성 부호화기의 주관적인 성능을 시험하기 위해 고정률 8kb/s QCELP와 A-B 선택 시험을 실시한 결과 전체적인 음질 성능이 거의 비슷한 수준을 가지는 것으로 나타났다.

  • PDF

패턴의 유형에 따른 학생들의 일반화 방법 조사 - 초등학교 6학년 학생들을 중심으로 - (Examining the Students' Generalization Method in Relation with the Forms of Pattern - Focused on the 6th Grade Students -)

  • 이명기;나귀수
    • 대한수학교육학회지:학교수학
    • /
    • 제14권3호
    • /
    • pp.357-375
    • /
    • 2012
  • 본 연구는 증가패턴의 유형에 따른 6학년 학생들의 일반화 방법의 특징을 조사하는데에 그 목적이 있다. 본 연구에서는 ax, x+a, ax+c, ax2, ax2+c 유형과 관련된 총 6개의 문항들로 검사지를 구성하였으며, 이 검사지를 활용하여 초등학교 6학년 학생 290명의 일반화 방법을 조사하였다. 본 연구의 결과로서 대수적 일반화와 관련하여 학생들은 ax유형에서 가장 높은 대수적 일반화 수행 정도를 나타냈고, 그 다음으로는 ax2, x+a, ax+c, ax2+c의 순서로 낮은 수행 정도를 나타냈다. 또한 학생들의 일반화 수행 정도는 동일한 패턴 유형이라고 하더라도 패턴의 맥락에 따라 큰 차이가 나는 것으로 확인되었는 바, 학생들의 패턴 일반화 활동을 더욱 풍부하게 하기 위해서는 가능하면 다양한 맥락의 패턴을 학생들에게 제공하는 것이 바람직하다고 할 수 있다.

  • PDF

컴프턴 카메라를 위한 재배열 기반 확정론적 영상재구성법 (Rebinning-Based Deterministic Image Reconstruction Methods for Compton Camera)

  • 이미노;이수진;서희
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권1호
    • /
    • pp.15-24
    • /
    • 2011
  • While Compton imaging is recognized as a valuable 3-D technique in nuclear medicine, reconstructing an image from Compton scattered data has been of a difficult problem due to its computational complexity. The most complex and time-consuming computation in Compton camera reconstruction is to perform the conical projection and backprojection operations. To alleviate the computational burden imposed by these operations, we investigate a rebinning method which can convert conical projections into parallel projections. The use of parallel projections allows to directly apply the existing deterministic reconstruction methods, which have been useful for conventional emission tomography, to Compton camera reconstruction. To convert conical projections into parallel projections, a cone surface is sampled with a number of lines. Each line is projected onto an imaginary plane that is mostly perpendicular to the line. The projection data rebinned in each imaginary plane can then be treated as the standard parallel projection data. To validate the rebinning method, we tested with the representative deterministic algorithms, such as the filtered backprojection method and the algebraic reconstruction technique. Our experimental results indicate that the rebinning method can be useful when the direct application of existing deterministic methods is needed for Compton camera reconstruction.

USART 방법에 의한 X선 영상으로부터의 삼차원 물체의 형상 복원 (Three Dimensional Volume Reconstruction of an Object from X-ray Iamges using Uniform and Simultaneous ART)

  • 노영준;조형석;김형철;김종형
    • 제어로봇시스템학회논문지
    • /
    • 제8권1호
    • /
    • pp.21-27
    • /
    • 2002
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three-dimensional surfaces. However, those conventional visual or optical methods have inherent shortcomings such as occlusion and variant surface reflection. X-ray vision system can be a good solution to these conventional problems, since we can extract the volume information including both the surface geometry and the inner structure of any objects. In the x-ray system, the surface condition of an object, whether it is lambertian or specular, does not affect the inherent characteristics of its x-ray images. In this paper, we propose a three-dimensional x-ray imaging method to reconstruct a three dimensional structure of an object out of two dimensional x-ray image sets. To achieve this by the proposed method, two or more x-ray images projected from different views are needed. Once these images are acquired, the simultaneous algebraic reconstruction technique(SART) is usually utilized. Since the existing SART algorithms have several shortcomings such as low performance in convergence and different convergence within the reconstruction volume of interest, an advanced SART algorithm named as USART(uniform SART) is proposed to avoid such shortcomings and improve the reconstruction performance. Because, each voxel within the volume is equally weighted to update instantaneous value of its internal density, it can achieve uniform convergence property of the reconstructed volume. The algorithm is simulated on various shapes of objects such as a pyramid, a hemisphere and a BGA model. Based on simulation results the performance of the proposed method is compared with that of the conventional SART method.

분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析) (Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions)

  • 장석윤
    • 대한조선학회지
    • /
    • 제13권1호
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

A simplified matrix stiffness method for analysis of composite and prestressed beams

  • Deretic-Stojanovic, Biljana;Kostic, Svetlana M.
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.53-63
    • /
    • 2017
  • The paper presents the simplified matrix stiffness method for analysis of composite and prestressed beams. The method is based on the previously developed "exact" analysis method that uses the mathematical theory of linear integral operators to derive all relations without any mathematical simplifications besides inevitable idealizations related to the material rheological properties. However, the method is limited since the closed-form solution can be found only for specific forms of the concrete creep function. In this paper, the authors proposed the simplified analysis method by introducing the assumption that the unknown deformations change linearly with the concrete creep function. Adopting this assumption, the nonhomogeneous integral system of equations of the "exact" method simplifies to the system of algebraic equations that can be easily solved. Therefore, the proposed method is more suitable for practical applications. Its high level of accuracy in comparison to the "exact" method is preserved, which is illustrated on the numerical example. Also, it is more accurate than the well-known EM method.

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

이상난류제트 유동에서 고체입자 난류확산의 수치모델에 관한 연구 (Study on the numerical models of turbulent dispersion of solid particles in a two-phase turbulent jet flow)

  • 양선규;최영돈
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-18
    • /
    • 1987
  • 본 연구에서는 입자가 부상된 이상난류제트유동에 Einstein의 확산모형, Pes- kin모형, 3-방정식 모형, 4-방정식 모형, 대수응력모형 등을 적용하여 해석하고 각 모 형들의 결과를 비교 분석하였다. 이상난류유동의 수치해석에서 공기는 제1유체유동 으로 하고 첨가되는 고체분말의 흐름은 밀도(.rho.$_{p}$), 층류동점성계수(.nu.$_{p}$), 과점성계수(.nu.$_{pt}$ )를 갖는 제2유체유동의 흐름으로 간주하였다.

Waviness가 있는 볼베어링으로 지지된 회전계의 동특성 해석 (II)-안정성 해석 - (Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I) -Vibration Analysis-)

  • 정성원;장건희
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2647-2655
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness i n a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time -varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i=1,2,3..).