DOI QR코드

DOI QR Code

A simplified matrix stiffness method for analysis of composite and prestressed beams

  • Deretic-Stojanovic, Biljana (Faculty of Civil Engineering, University of Belgrade) ;
  • Kostic, Svetlana M. (Faculty of Civil Engineering, University of Belgrade)
  • Received : 2016.10.24
  • Accepted : 2017.03.02
  • Published : 2017.05.20

Abstract

The paper presents the simplified matrix stiffness method for analysis of composite and prestressed beams. The method is based on the previously developed "exact" analysis method that uses the mathematical theory of linear integral operators to derive all relations without any mathematical simplifications besides inevitable idealizations related to the material rheological properties. However, the method is limited since the closed-form solution can be found only for specific forms of the concrete creep function. In this paper, the authors proposed the simplified analysis method by introducing the assumption that the unknown deformations change linearly with the concrete creep function. Adopting this assumption, the nonhomogeneous integral system of equations of the "exact" method simplifies to the system of algebraic equations that can be easily solved. Therefore, the proposed method is more suitable for practical applications. Its high level of accuracy in comparison to the "exact" method is preserved, which is illustrated on the numerical example. Also, it is more accurate than the well-known EM method.

Keywords

Acknowledgement

Supported by : Ministry of Science of the Republic of Serbia

References

  1. Amadio, C., Fragiacomo, M. and Macorini, L. (2012), "Evaluation of the deflection of steel-concrete composite beams at serviceability limit state", J. Constr. Steel Res., 73, 95-104. https://doi.org/10.1016/j.jcsr.2012.01.009
  2. Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method", J. Am. Concrete Inst., 69, 212-217.
  3. Bazant, Z.P. and Huet, C. (1999), "Thermodynamic functions for ageing viscoelasticity: Integral form without internal variables", Int. J. Solids Struct., 36(26), 3993-4016. https://doi.org/10.1016/S0020-7683(98)00184-X
  4. Bazant, Z.P., Hubler, M.H. and Jirasek, M. (2013), "Improved estimation of long-term relaxation function from compliance function of aging concrete", J. Eng. Mech., 139(2), 146-152. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000339
  5. Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007), "Hybrid procedure for cracking and yime-dependent effects in composite frames at service load", J. Struct. Eng., 133(2), 166-175. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(166)
  6. Deretic-Stojanovic, B. and Kostic, S.M. (2014), "Time-dependent analysis of composite and prestressed beams using the slope deflection method", Arch. Appl. Mech., 85(2), 257-272. https://doi.org/10.1007/s00419-014-0917-z
  7. Deretic-Stojanovic, B. and Kostic, S.M. (2015), "Matrix stiffness method for composite and prestressed beam analysis using linear integral operators", Arch. Appl. Mech., 85(12), 1961-1981. https://doi.org/10.1007/s00419-015-1030-7
  8. Dezi, L. and Gara, F. (2001), "Time-dependent analysis of shearlag effect in composite beams", J. Eng. Mech., 127(1), 71-79. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(71)
  9. Dezi, L., Leoni, G. and Tarantino, A.M. (1995), "Time-dependent analysis of prestressed composite beams", J. Struct. Eng., 121(4), 621-633. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(621)
  10. Dezi, L., Leoni, G. and Tarantino, A.M. (1996), "Algebraic methods for creep analysis of continuous composite beams", J. Struct. Eng., 122(4), 423. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(423)
  11. Faella, C., Martinelli, E. and Nigro, E. (2010), "Steel-concrete composite beams in partial interaction: Closed-form "exact" expression of the stiffness matrix and the vector of equivalent nodal forces", Eng. Struct., 32(9), 2744-2754. https://doi.org/10.1016/j.engstruct.2010.04.044
  12. Fan, J., Nie, X., Li, Q. and Li, Q. (2010), "Long-term behavior of composite beams under positive and negative bending. II: Analytical atudy", J. Struct. Eng., 136(7), 858-865. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000176
  13. Fragiacomo, M., Amadio, C. and Macorini, L. (2004), "Finiteelement model for collapse and long-term analysis of steel-concrete composite beams", J. Struct. Eng., 130(3), 489-497. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(489)
  14. Fritz, B. (1961), Verbundtrager, Springer-Verlag.
  15. Kwak, H.-G. and Seo, Y.-J. (2000), "Long-term behavior of composite girder bridges", Comput. Struct., 74(5), 583-599. https://doi.org/10.1016/S0045-7949(99)00064-4
  16. Lazic, V.B. (2003), Mathematical Theory of Composite and Prestressed Structures, Mathematical Institute SANU, Belgrade, Serbia.
  17. Macorini, L., Fragiacomo, M., Amadio, C. and Izzuddin, B.A. (2006), "Long-term analysis of steel-concrete composite beams: FE modelling for effective width evaluation", Eng. Struct., 28(8), 1110-1121. https://doi.org/10.1016/j.engstruct.2005.12.002
  18. Mirza, O. and Uy, B. (2010), "Finite element model for the longterm behaviour of composite steel-concrete push tests", Steel Compos. Struct., Int. J., 10(1), 45-67. https://doi.org/10.12989/scs.2010.10.1.045
  19. Nguyen, Q.-H., Hjiaj, M. and Uy, B. (2010), "Time-dependent analysis of composite beams with continuous shear connection based on a space-exact stiffness matrix", Eng. Struct., 32(9), 2902-2911. https://doi.org/10.1016/j.engstruct.2010.05.009
  20. Partov, D. and Kantchev, V. (2009), "Time-dependent analysis of composite steel-concrete beams using integral equation of volterra, according to Eurocode 4", Eng. Mech., 16(5), 367-392.
  21. Ranzi, G., Leoni, G. and Zandonini, R. (2013), "State of the art on the time-dependent behaviour of composite steel-concrete structures", J. Constr. Steel Res., 80, 252-263. https://doi.org/10.1016/j.jcsr.2012.08.005
  22. Wu, J., Frangopol, D.M. and Soliman, M. (2015), "Simulating the construction process of steel-concrete composite bridges", Steel Compos. Struct., Int. J., 18(5), 1239-1258. https://doi.org/10.12989/scs.2015.18.5.1239

Cited by

  1. Influence of post-pouring joint on long-term performance of steel-concrete composite beam vol.28, pp.1, 2017, https://doi.org/10.12989/scs.2018.28.1.039