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FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD

FOR SOLVING THE FRACTIONAL BVPS

M. M. KHADER∗ AND A. S. HENDY

Abstract. In this paper, we introduce a new numerical technique which
we call fractional Chebyshev finite difference method (FChFD). The al-
gorithm is based on a combination of the useful properties of Chebyshev

polynomials approximation and finite difference method. We tested this
technique to solve numerically fractional BVPs. The proposed technique is
based on using matrix operator expressions which applies to the differential
terms. The operational matrix method is derived in our approach in order

to approximate the fractional derivatives. This operational matrix method
can be regarded as a non-uniform finite difference scheme. The error bound
for the fractional derivatives is introduced. The fractional derivatives are

presented in terms of Caputo sense. The application of the method to
fractional BVPs leads to algebraic systems which can be solved by an ap-
propriate method. Several numerical examples are provided to confirm the
accuracy and the effectiveness of the proposed method.
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1. Introduction

Fractional differential equations have been the focus of many studies due
to their frequent appearance in various applications in fluid mechanics, biol-
ogy, physics and engineering [2]. Consequently, considerable attention has been
given to the solutions of FDEs and integral equations of physical interest. Most
FDEs do not have exact analytical solutions, so approximate and numerical tech-
niques [7, 19, 23] must be used. Several numerical methods to solve FDEs have
been given such as homotopy perturbation method [21, 22], Adomian decom-
position method [13], homotopy analysis method [12] and collocation method
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[14, 15, 16, 17]. Representation of a function in terms of a series expansion using
orthogonal polynomials is a fundamental concept in approximation theory and
form the basis of the solution of differential equations [3, 10, 11, 16, 24, 25].
Chebyshev polynomials are widely used in numerical computation. One of the
advantages of using Chebyshev polynomials as a tool for expansion functions
is the good representation of smooth functions by finite Chebyshev expansion
provided that the function y(x) is infinitely differentiable. The coefficients in
Chebyshev expansion approach zero faster than any inverse power in n as n
goes to infinity. Clenshaw and Curtis [4] give a procedure for the numerical
integration of a non-singular function y(x) by expanding the function in a series
of Chebyshev polynomials and integration term by term. Elbarbary introduced
Chebyshev finite difference approximation for the boundary value problems of
integer derivatives [5, 6, 17]. A new formula expressing explicitly the derivatives
of shifted Chebyshev polynomials of any degree and for any fractional order in
terms of Chebyshev polynomials themselves is stated and proved in [7].

The purpose of this paper is to present an alternative operational matrix for
the fractional differentiation. The fractional derivatives of the function y(x) at
the point xk, 0 ≤ k ≤ N are expanded as a linear combination from the values of
the function y(x) at the shifted Gauss-Lobatto points xr = L

2 − L
2 cos(πrN ), r =

0, 1, ..., N associated with the interval [0, L]. The main characteristic of this new
technique is that it gives a straight forward algorithm in converting fractional
BVPs to a system of algebraic equations. The first and last rows of the coeffi-
cients matrix of the algebraic system are replaced by suitable formulation of the
boundary conditions. The suggested method is more accurate in comparison to
the finite difference and finite element methods as the approximation of the frac-
tional derivatives is defined over the whole domain. This algorithm has several
advantages such as being non-differentiable, non-integral and easily implemented
on a computer, because its structure is dependent on matrix operations only.
The main aim of the presented paper is concerned with the application of this
approach to obtain the numerical solution of fractional BVPs.

The structure of this paper is arranged in the following way: In section 2,
we introduce some basic definitions about Caputo fractional derivatives and
properties the shifted Chebyshev polynomials. In section 3, the basic formulation
of the new operational matrix method using FChFD method. In section 4, an
error bound of the fractional derivatives is introduced. In section 5, numerical
examples are given to solve FBVPs and show the accuracy of the presented
method. Finally, in section 6, the report ends with a brief conclusion and some
remarks.

2. Preliminaries and notations

In this section, we present some necessary definitions and mathematical pre-
liminaries of the fractional calculus theory required for our subsequent develop-
ment.
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2.1. The fractional derivative in the Caputo sense.

Definition 2.1. The Caputo fractional derivative operator Dν of order ν is
defined in the following form:

D νf(x) =
1

Γ(m− ν)

∫ x

0

f (m)(ξ)

(x− ξ)ν−m+1
dξ, ν > 0,

where m− 1 < ν ≤ m, m ∈ N, x > 0.

Similar to integer-order differentiation, Caputo fractional derivative operator
is a linear operation:

D ν (λp(x) + µq(x)) = λD νp(x) + µD νq(x), (1)

where λ and µ are constants.
For the Caputo’s derivative we have:

Dν C = 0, C is a constant, (2)

Dν xn =

{
0, for n ∈ N0 and n < ⌈ν⌉;
Γ(n+1)

Γ(n+1−ν)x
n−ν , for n ∈ N0 and n ≥ ⌈ν⌉. (3)

We use the ceiling function ⌈ν⌉ to denote the smallest integer greater than or
equal to ν and N0 = {0, 1, 2, ...}. Recall that for ν ∈ N, the Caputo differential
operator coincides with the usual differential operator of integer order.
For more details on fractional derivatives definitions and its properties see [1,
10, 20].

2.2. The definition and properties of the shifted Chebyshev polynomi-
als. The well known Chebyshev polynomials are defined on the interval [−1, 1]
and can be determined with the aid of the following recurrence formula:

Tn+1(z) = 2z Tn(z)− Tn−1(z), T0(z) = 1, T1(z) = z n = 1, 2, ... .

It is well known that Ti(1) = 1, and Ti(−1) = (−1)n. The analytic form of the
Chebyshev polynomials Tn(z) of degree n is given by

Tn(z) =

⌊n/2⌋∑
i=0

(−1)i 2n−2 i−1 n (n− i− 1)!

(i)! (n− 2 i)!
zn−2 i, (4)

where ⌊n/2⌋ denotes the integer part of n/2. The orthogonality condition is∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =

 π, for i = j = 0;
π
2 , for i = j ̸= 0;
0, for i ̸= j.

(5)

In order to use these polynomials on the interval [0, L] we define the so called
shifted Chebyshev polynomials by introducing the change of variable z = 2x

L −1.
The shifted Chebyshev polynomials are defined as:

T ∗
n(x) = Tn(

2x

L
− 1), where T ∗

0 (x) = 1, T ∗
1 (x) =

2x

L
− 1.
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The analytic form of the shifted Chebyshev polynomial T ∗
n(x) of degree n is

given by:

T ∗
n(x) = n

n∑
k=0

(−1)n−k (n+ k − 1)!22k

(n− k)!(2k)!Lk
xk, (6)

where, T ∗
n(0) = (−1)n, and T ∗

n(L) = 1. The orthogonality condition of these
polynomials is: ∫ L

0

T ∗
j (x)T

∗
k (x)w(x)dx = δjkhk, (7)

where, the weight function w(x) = 1√
Lx−x2

, hk = bk
2 π, with b0 = 2, bk = 1, k ≥

1.
The function y(x) which belongs to the space of square integrable in [0, L], may
be expressed in terms of shifted Chebyshev polynomials as:

y(x) =

∞∑
n=0

cn T
∗
n(x),

where the coefficients cn are given by:

cn =
1

hn

∫ L

0

y(x)T ∗
n(x)w(x)dx, n = 0, 1, 2, ... . (8)

3. Basic formulation of the new operational matrix method using
FChFD method

The well known shifted Chebyshev polynomials of the first kind of degree n
are defined on the interval [0, L] as in Eq.(6). We choose the grid (interpolation)
points to be the Chebyshev- Gauss Lobatto points associated with the interval
[0, L], xr = L

2 − L
2 cos(πrN ), r = 0, 1, ..., N . These grids can be written as L =

xN < xN−1 < ... < x1 < x0 = 0.
Clenshaw and Curtis [4] introduced an approximation of the function y(x), we
reformulate it to be used on the shifted Chebyshev polynomials as follows,

y(x) =
N∑

n=0

′′
an T

∗
n(x), an =

2

N

N∑
r=0

′′
y(xr)T

∗
n(xr). (9)

The summation symbol with double primes denotes a sum with both first and
last terms halved.

The fractional derivative of the function y(x) at the point xs is given in the
following theorem.

Theorem 3.1. The fractional derivative of order ν in the Caputo sense for the
function y(x) at the point xs is given by

y(ν)(xs) =

N∑
r=0

d(ν)s,r y(xr), ν > 0, (10)
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such that

d
(ν)
s,r =

4θr

N

N∑
n=⌈ν⌉

N∑
j=0

n∑
k=⌈ν⌉

nθn

bj

(−1)n−k (n + k − 1)! Γ(k − ν + 1
2
)

Lν Γ(k + 1
2
) (n − k)! Γ(k − ν − j + 1) Γ(k − ν + j + 1)

T
∗
n(xr)T

∗
j (xs),

where, s, r = 0, 1, 2, ..., N with θ0 = θN = 1
2 , θi = 1 ∀ i = 1, 2, ..., N − 1.

Proof. The fractional derivative of the approximate formula for the function y(x)
in Eq.(9) is given by

D(ν) y(x) =

N∑
n=0

′′
an D

(ν)T ∗
n(x). (11)

Employing Eqs.(2) and (3) we have:

D(ν)T ∗
n(x) = 0, n = 0, 1, ..., ⌈ν⌉ − 1,

then,

D(ν) y(x) =
N∑

n=⌈ν⌉

′′
an D

(ν)T ∗
n(x), an =

2

N

N∑
r=0

′′
y(xr)T

∗
n(xr). (12)

Also, for n = ⌈ν⌉, ..., N and by using Eqs.(2)-(3), we get

D(ν) T ∗
n(x) = n

n∑
k=0

(−1)n−k (n+ k − 1)! 22k

(n− k)! (2k)!Lk
D(ν)xk

= n
n∑

k=⌈ν⌉

(−1)n−k (n+ k − 1)! 22k k!

(n− k)! (2k)!LkΓ(k − ν + 1)
xk−ν .

(13)

Now, xk−ν can be expressed approximately in terms of shifted Chebyshev series,
so we have:

xk−ν ∼=
N∑
j=0

ckj T
∗
j (x), (14)

where, ckj is obtained from (8) with y(x) = xk−ν [7]. If only the first (N + 1)-
terms from shifted Chebyshev polynomials in Eq.(9) are considered, the approx-
imate formula for the fractional derivative of the shifted Chebyshev polynomials
introduced by Doha [7] as follows:

D
(ν)

T
∗
n(x) =

N∑
j=0

n∑
k=⌈ν⌉

(−1)n−k 2n (n + k − 1)! Γ(k − ν + 1
2 )

bj Lν Γ(k + 1
2 ) (n − k)! Γ(k − ν − j + 1) Γ(k − ν + j + 1)

T
∗
j (x). (15)

From Eqs.(12) and (15), we have:

D
(ν)

y(x) =
4

N

N∑
n=⌈ν⌉

′′ N∑
r=0

′′ N∑
j=0

n∑
k=⌈ν⌉

(−1)n−kn(n + k − 1)!Γ(k − ν + 1
2
)y(xr)T

∗
n(xr)T

∗
j (x)

bj LνΓ(k + 1
2
) (n − k)!Γ(k − ν − j + 1)Γ(k − ν + j + 1)

. (16)

From Eq.(16), the fractional derivative of order ν for the function y(x) at the
point xs leads to the desired result. �
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The coefficients d
(ν)
s,r which are defined in Theorem 1 are the elements of the s-th

row of the matrix Dν which is defined in the following relation:

[y(ν)] = Dν [y],

where, Dν is a square matrix of order (N + 1) and the column matrices [y(ν)]

and [y] are given by y
(ν)
r = y(ν)(xr) and yr = y(xr).

4. Error bound for the fractional derivatives of order ν

We approximate the derivatives of a function y(x) by interpolating the func-
tion with a polynomial at the shifted Chebyshev Gauss-Lobatto nodes xk, dif-
ferentiating the polynomial and then evaluating the polynomial at the same
nodes. with yk = y(xk), construct a global Nth order Chebyshev interpolating
polynomial [9]

(PNy)(x) =
N∑

r=0

yr φr(x), φr(x) =
2θr

N

N∑
k=0

θk T
∗
k (xr)T

∗
k (x), θ0 = θN =

1

2
and θi = 1, i ≥ 1, (17)

The projection operator (PNy)(x) is a unique N-th degree interpolating poly-
nomial defined as

(PNy)(xr) = y(xr), r = 0, 1, ..., N. (18)

Alternatively, the interpolating polynomial (PNy)(x) can be expressed in terms
of series expansion of the shifted Chebyshev polynomials of the first kind as
follows

(PNy)(x) =

N∑
n=0

an T
∗
n(x), an =

2θn
N

N∑
r=0

θryr T
∗
n(xr). (19)

We use the shifted Chebyshev Gauss-Lobatto nodes xr = L
2 − L

2 cos(πrN ), r =
0, 1, ..., N as interpolated points. The fractional derivatives of order ν for y(x)
can be estimated at the points xr by differentiating Eq.(17) and evaluating the
resulting expression. This yields

D
(ν)

(PNy)(x) =

N∑
r=0

yr D
(ν)

φr(x)

=
N∑

r=0

4θr

N

N∑
n=⌈ν⌉

N∑
j=0

n∑
k=⌈ν⌉

nθn

bj

(−1)n−k (n + k − 1)! Γ(k − ν + 1
2
)T∗

n(xr)T
∗
j (x)

Lν Γ(k + 1
2
) (n − k)! Γ(k − ν − j + 1) Γ(k − ν + j + 1)

.

Settingy = [y(x0), y(x1), . . . , y(xN )]T and y(ν) = [y(ν)(x0), y
(ν)(x1), . . . , y

(ν)(xN )]T .

We approximate the derivatives of y(x) at the points xr, r = 0, 1, . . . , N, by the
equation

y(ν) = Dνy. (20)

The entries of the matrix Dν are given in Eq.(10) and can be replaced by

d
(ν)
s,r =

4θr

N

N∑
n=⌈ν⌉

N∑
j=0

n∑
k=⌈ν⌉

nθn

bj

(−1)n−k (n + k − 1)! Γ(k − ν + 1
2 )

Lν Γ(k + 1
2 ) (n − k)! Γ(k − ν − j + 1) Γ(k − ν + j + 1)

×(
L

2
−

L

2
cos(

nπr

N
)) (

L

2
−

L

2
cos(

jπs

N
)),
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d
(ν)
s,r =

4θr

N

N∑
n=⌈ν⌉

N∑
j=0

n∑
k=⌈ν⌉

nθn

bj

(−1)n−k (n + k − 1)! Γ(k − ν + 1
2 )

Lν Γ(k + 1
2 ) (n − k)! Γ(k − ν − j + 1) Γ(k − ν + j + 1)

×
L2

4

(
1 + cos(

nπr

N
) cos(

jπs

N
) − 2 cos(

(nr + js)π

N
) cos(

(nr − js)π

N
)
)
.

(21)

Now, we investigate the effect of roundoff error on the elements d
(ν)
s,r . In finite

precision arithmetic, however, we have x∗
r = xr + δr, where δr denotes a small

error, with |δr| approximately equal to machine precision ϵ and δ = maxr|δr|
we use the notation x∗

r for the exact value whereas xr for the computed value.
The absolute errors of the quantities xrxn still being on the order of machine
precision [9].

|x∗
rx

∗
n − xrxn| = (δr + δn)−O

( 1

N2
δr

)
−O

( 1

N2
δn

)
.

In order to evaluate the error bound for the fractional derivatives of any arbitrary
order, we introduce the following theorem.

Theorem 4.1. The effect of roundoff error on the elements d
(ν)
s,r is bounded by

the following formula

d(ν)∗s,r − d(ν)s,r ≤
N∑

j=0

n∑
k=⌈ν⌉

nθn
bj

(−1)n−k (n+ k − 1)! Γ(k − ν + 1
2
)

Lν Γ(k + 1
2
) (n− k)! Γ(k − ν − j + 1)Γ(k − ν + j + 1)

×θrL
2

N

(
1−

(
δ −O

( 1

N2
δ
)))

.

(22)

Proof. Using the periodic properties of the cosine functions in Eq.(21), we have

d
(ν)
s,r =

4θr

N

N∑
n=⌈ν⌉

N∑
j=0

n∑
k=⌈ν⌉

nθn

bj

(−1)n−k (n+ k − 1)! Γ(k − ν + 1
2
)

Lν Γ(k + 1
2
) (n− k)! Γ(k − ν − j + 1)Γ(k − ν + j + 1)

×
L2

4

[
1 + (−1)⌊

nr
N

⌋+⌊ js
N

⌋xnr−N⌊nr
N

⌋xjs−N⌊ js
N

⌋

− 2(−1)⌊
nr+js

N
⌋+⌊nr−js

N
⌋x

nr+js−N⌊nr+js
N

⌋xnr−js−N⌊nr−js
N

⌋

]
.

(23)

d
(ν)
s,r =

θrL
2

N

N∑
n=⌈ν⌉

N∑
j=0

n∑
k=⌈ν⌉

(nθn

bj

(−1)n−k (n + k − 1)! Γ(k − ν + 1
2
)

Lν Γ(k + 1
2
) (n − k)! Γ(k − ν − j + 1) Γ(k − ν + j + 1)

×
[
1 + (−1)

⌊nr
N

⌋+⌊ js
N

⌋(
(δnr−N⌊nr

N
⌋ + δ

js−N⌊ js
N

⌋
) − O

( 1

N2
δnr−N⌊nr

N
⌋

)
− O

( 1

N2
δ
js−N⌊ js

N
⌋

))
−2(−1)

⌊nr+js
N

⌋+⌊nr−js
N

⌋(
(δ

nr+js−N⌊nr+js
N

⌋
+ δ

nr−js−N⌊nr−js
N

⌋
) − O

( 1

N2
δ
nr+js−N⌊nr+js

N
⌋

)
−O

( 1

N2
δ
nr−js−N⌊nr−js

N
⌋

))])
.

(24)

As δ = maxr|δr| for any r, Eq.(23) leads to the desired result and completes
the proof of the theorem. �
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5. Numerical implementation

In order to illustrate the effectiveness of the proposed method, we implement
it to solve the following ordinary fractional differential equations.

Example 1. Consider the following fractional Bagley-Torvik equation [18]:

D2y(x) +D
3
2 y(x) + y(x) = g(x), 0 ≤ x ≤ 5, (25)

with the following boundary conditions: y(0) = 0, y(5) = 25.

Where g(x) = x2+2+4
√

x/π and the exact solution at this problem is y(x) = x2.
In order to solve Eq.(25) by the proposed FChFD method, we use Eq.(9) to
approximate y(x). A collocation scheme is defined by substituting Eqs.(9) and
(10) into Eq.(25) and evaluating the results at the shifted Gauss-Lobatto nodes
xs, s = 1, 2, ..., N − 1. This gives

N∑
r=0

d( 2)s,r y(xr) +
N∑
r=0

d
( 3

2 )
s,r y(xr) + y(xs) = g(xs), s = 1, 2, ..., N − 1, (26)

where d
( 2)
s,r and d

( 3
2 )

s,r are defined in Theorem 1. By using boundary conditions
we have y(x0) = 0 and y(xN ) = 25. Eq.(26) gives N − 1 algebraic equations
which can be solved for the unknown coefficients y(x1), y(x2), ..., y(xN−1). Con-
sequently y(x) given in Eq.(9) can be calculated. For N = 3 and using the
boundary conditions, we have a system of two linear algebraic equations:

1.1990 y(x1)− 1.2341 y(x2) = −15.4807, (27)

0.0395 y(x1) + 0.3195 y(x2) = 4.5545. (28)

After solving this system using the conjugate gradient method, we obtain:

y(x0) = 0, y(x1) = 1.5625, y(x2) = 14.0625, y(x3) = 25.

So, we obtain the approximate solution

y(x) ∼=
2

3

3∑
n=0

′′
3∑

n=0

′′
y(xr)T

∗
n(xr)T

∗
n(x) = x2 ,

which coincides with the exact solution of this problem.

Example 2. Consider the following non-linear fractional boundary value prob-
lem [8]:

D3y(x) +D
5
2 y(x) + y2(x) = x4, 0 ≤ x ≤ 1, (29)

with the following boundary conditions: y(0) = 0, y(1) = 1.
In order to solve Eq.(29) by the proposed FChFD method, we use Eq.(9) to
approximate y(x). A collocation scheme is defined by substituting Eqs.(9) and
(10) into Eq.(29) and evaluating the results at the shifted Gauss-Lobatto nodes
xs, s = 1, 2, ..., N − 1. This gives

N∑
r=0

d(3)s,ry(xr) +

N∑
r=0

d
( 5

2 )
s,r y(xr) + y2(xs) = x4

s, s = 1, 2, ..., N − 1, (30)
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where d
(3)
s,r and d

( 5
2 )

s,r are defined in Theorem 1. By using boundary conditions we
have y(x0) = 0 and y(xN ) = 1. Eq.(30) givesN−1 algebraic equations which can
be solved for the unknown coefficients y(x1), y(x2), ..., y(xN−1). Consequently
y(x) given in Eq.(9) can be calculated. For N = 3 and using the boundary
conditions, we have a system of two non-linear algebraic equations:

50.0541 + 100.108 y(x1)− 100.108 y(x2) + y2(x1) = 0.00391, (31)

63.2706 + 126.541 y(x1)− 126.541 y(x2) + y2(x2) = 0.3164. (32)

After solving this system and using the Newton iteration method, we obtain:

y(x0) = 0, y(x1) = 0.0625, y(x2) = 0.5625, y(x3) = 1.

So, we obtain the approximate solution

y(x) ∼=
2

3

3∑
n=0

′′
3∑

n=0

′′
y(xr)T

∗
n(xr)T

∗
n(x) = x2

which coincides with the exact solution y(x) = x2 of this problem.

6. Conclusion and remarks

In this article, we introduced an efficient method for solving fractional bound-
ary value problems. Our approach was based on a basic formulation of the new
operational matrix method. In this work, the fractional derivatives of a non-
singular function at any point from the Gauss-Lobatto points are expanded as
a linear combination from the values of the function at these points. The coef-
ficients of this linear combination are the elements of the suggested matrix Dν .
This new proposed method is non-differentiable, non-integral, straightforward
and well adapted to the computer implementation. The solution is expressed as
a truncated FChFD series and so it can be easily evaluated for arbitrary values
of x using any computer program without any computational effort. From illus-
trative examples, it can be seen that this new numerical approach can obtain
very accurate and satisfactory results. All computational calculations are made
by Mathematica.
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