• 제목/요약/키워드: Algebraic

검색결과 1,577건 처리시간 0.031초

R, fuzzy R, and Algebraic Kripke-style Semantics

  • 양은석
    • 논리연구
    • /
    • 제15권2호
    • /
    • pp.207-222
    • /
    • 2012
  • 이 글에서 우리는 연관 논리 R을 퍼지화한 체계 FR을 위한 크립키형 의미론을 다룬다. 이를 위하여 먼저 FR 체계를 소개하고 그에 상응하는 FR-대수를 정의한 후 FR이 대수적으로 완전하다는 것을 보인다. 다음으로 FR을 위한 대수적 크립키형 의미론을 소개하고 이를 대수적 의미론과 연관 짓는다. 마지막으로 이러한 의미론이 R에는 적용될 수 없다는 점을 보인다.

  • PDF

우리나라와 미국의 초기대수 비교 연구 -초등수학 교과서에 제시된 연산 감각을 중심으로- (A Comparative Study on Early Algebra between Korea and USA Textbooks -focusing to operation sense in the elementary mathematics-)

  • 김성준
    • East Asian mathematical journal
    • /
    • 제29권4호
    • /
    • pp.355-392
    • /
    • 2013
  • Generally school algebra is to start with introducing variables and algebraic expressions, which have major cognitive obstacles to students in the transfer from arithmetic to algebra. But the recent studies in the teaching school algebra argue the algebraic thinking from an early algebraic point of view. We compare the Korean elementary mathematics textbooks with Americans from this perspective. First, we discuss the history of school algebra in the school curriculum. And Second, we investigate the recent studies in relation to early algebra. We clarify the goals of this study(the importance of early algebra in the elementary school) through these discussions. Next we examine closely the number sense in the arithmetic and the symbol sense in the algebra. And we conclude that the operation sense can connect these senses within early algebra using the algebraic thinking. Finally, we compare the elementary mathematics books between Korean and American according to the components of the operation sense. In this comparative study, we identify a possibility of teaching algebraic thinking in the elementary mathematics and early algebra can be introduced to the elementary mathematics textbooks from aspects of the operation sense.

대수 증명에서 종속적 일반성의 인식 및 특정수 전이에 관한 연구 (Study on recognition of the dependent generality in algebraic proofs and its transition to numerical cases)

  • 강정기;장혜원
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제53권1호
    • /
    • pp.93-110
    • /
    • 2014
  • Algebra deals with so general properties about number system that it is called as 'generalized arithmetic'. Observing students' activities in algebra classes, however, we can discover that recognition of the generality in algebraic proofs is not so easy. One of these difficulties seems to be caused by variables which play an important role in algebraic proofs. Many studies show that students have experienced some difficulties in recognizing the meaning and the role of variables in algebraic proofs. For example, the confusion between 2m+2n=2(m+n) and 2n+2n=4n means that students misunderstand independent/dependent variation of variables. This misunderstanding naturally has effects on understanding of the meaning of proofs. Furthermore, students also have a difficulty in making a transition from algebraic proof to numerical cases which have the same structure as the proof. This study investigates whether middle school students can recognize dependent generality and make a transition from proofs to numerical cases. The result shows that the participants of this study have a difficulty in both of them. Based on the result, this study also includes didactical implications for teaching the generality of algebraic proofs.

극한 문제의 풀이 과정에서 대수적 절차와 그래프를 이용한 방식의 연결에 대한 사례연구 (A case study on students' expressions in solving the limitations of functions problems)

  • 이동근
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제58권1호
    • /
    • pp.79-99
    • /
    • 2019
  • This study is a study to collect information about 'Limitations of functions' related learning. Especially, this study was conducted on three students who can find answers by algebraic procedure in the process of extreme problem solving. Students have had the experience of converting from their algebraic procedures to graphical expressions. This shows how they reflect on their algebraic procedures. This study is a study that observes these parts. To accomplish this, twelfth were teaching experiment in three high school students. And we analyzed the contents related to the research topic of this study. Through this, students showed the difference of expressions in the method of finding limits by using algebraic interpretation methods and graphs. In addition, we examined the connectivity of the limitations of functions problem solving process of functions using algebraic procedures and graphs in the process of converting algebraic expressions to graph expressions. This study is a study of how students construct limit concepts. As in this study, it is meaningful to accumulate practical information about students' limit conceptual composition. We hope that this study will help students to study limit concept development process for students who have no limit learning experience in the future.

Approximate voronoi diagrams for planar geometric models

  • Lee, Kwan-Hee;Kim, Myung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1601-1606
    • /
    • 1991
  • We present an algorithm to approximate the Voronoi diagrams of 2D objects bounded by algebraic curves. Since the bisector curve for two algebraic curves of degree d can have a very high algebraic degree of 2 * d$^{4}$, it is very difficult to compute the exact algebraic curve equation of Voronoi edge. Thus, we suggest a simple polygonal approximation method. We first approximate each object by a simple polygon and compute a simplified polygonal Voronoi diagram for the approximating polygons. Finally, we approximate each monotone polygonal chain of Voronoi edges with Bezier cubic curve segments using least-square curve fitting.

  • PDF

방정식의 해법에 관한 소고

  • 이대현
    • 한국수학사학회지
    • /
    • 제17권1호
    • /
    • pp.61-68
    • /
    • 2004
  • This paper aims at investigating the algebraic solution of cubic and quartic equation and eliciting the didactical meanings of them. First, I examine the event which relates to the equation in the history of mathematics and investigate the algebraic solution of cubic and quartic equation. And then I elicit the didactical suggestions which are required of teachers and students when they investigate the algebraic solution of cubic and quartic equation. In general, the investigation of these solutions is the valuable task which requires the algebraic intuition and technique for students and certificates expert knowledge for teachers.

  • PDF

Tomographic Reconstruction of Two-Phase Flows

  • Ko, Han-Seo;Kim, Yong-Jae
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.571-580
    • /
    • 2003
  • Tomography has been investigated to observe bubble behaviors in two-phase flows. A bubbly flow and an annular flow have been reconstructed by tomography methods such as an algebraic reconstruction technique (ART) and a multiplicative algebraic reconstruction technique (MART) . Computer synthesized phantom fields have been used to calculate asymmetric density distributions for limited cases of 3, 5, and 7 projection angles. As a result of comparison of two tomography methods, the MART method has shown a significant improvement in the reconstruction accuracy for analysis of the two-phase flows.

EQUIVARIANT ALGEBRAIC APPROXIMATIONS OF G MAPS

  • Suh, Dong-Youp
    • 대한수학회논문집
    • /
    • 제10권4호
    • /
    • pp.949-961
    • /
    • 1995
  • Let f be a smooth G map from a nonsingular real algebraic G variety to an equivariant Grassmann variety. We use some G vector bundle theory to find a necessary and sufficient condition to approximate f by an entire rational G map. As an application we algebraically approximate a smooth G map between G spheres when G is an abelian group.

  • PDF

Algebraic semantics for some weak Boolean logics

  • Yang, Eun-Suk
    • 논리연구
    • /
    • 제9권2호
    • /
    • pp.1-30
    • /
    • 2006
  • This paper investigates algebraic semantics for some weak Boolean (wB) logics, which may be regarded as left-continuous t-norm based logics (or monoidal t-norm based logics (MTLs)). We investigate as infinite-valued logics each of wB-LC and wB-sKD, and each corresponding first order extension $wB-LC\forall$ and $wB-sKD\forall$. We give algebraic completeness for each of them.

  • PDF

시변 측정잡음 모델을 고려한 실시간 시선각 변화율 추정필터 (A Practical Real-Time LOS Rate Estimator with Time-Varying Measurement Noise Variance)

  • 나원상;이진익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2082-2084
    • /
    • 2003
  • A practical real-time LOS rate estimator is proposed to handle the time-varying measurement noise statistics. To calculate the optimal Kalman gain, the algebraic transformation method is taken into account. By using the algebraic transformation, the differential algebraic Riccati equation(DARE) regarding estimation error covariance is replaced by the simple algebraic Riccati equation(ARE). The proposed LOS estimation filter gain is only a function of relative range. Consequently, the proposed method is computationally very efficient and suitable for embedded environment.

  • PDF