EQUIVARIANT ALGEBRAIC APPROXIMATIONS OF G MAPS

DONG YOUR SUR

ABSTRACT. Let f be a smooth G map from a non-singular real algebraic G variety to an equivariant Grassmann variety. We use some G vector bundle theory to find a necessary and sufficient condition to approximate f by an entire rational G map. As an application we algebraically approximate a smooth G map between G spheres when G is an abelian group.

· 0. Introduction

Throughout this paper we let G be a compact Lie group. A real algebraic G variety in an orthogonal representation Ω is the common zeros of polynomials $p_1, \ldots, p_m : \Omega \to \mathbb{R}$, which is invariant under the action of G on Ω . We also say that G acts algebraically on V.

Let X and Y be nonsingular real algebraic G varieties. The question we are interested in here is the following: when can a given G map $f: X \to Y$ be approximated by polynomial G maps or entire rational G maps? If X is compact and Y is an orthogonal representation, then the classical Stone-Weierstrass theorem can be extended equivariantly. Namely, using Theorem 1.1 which is a version of Stone-Weierstrass theorem and the averaging operator we have Theorem 1.3 and Corollary 1.4. However if Y is not an orthogonal representation, then approximation of f by polynomial maps or entire rational maps are not always possible, see [Wo] and [BK2]. On the other hand, in nonequivariant case (i.e.

Received March 21, 1995. Revised September 16, 1995.

¹⁹⁹¹ AMS Subject Classification: Primary 57S17, 14P05.

Key words and phrases: real algebraic G varieties, entire rational approximation, strongly algebraic vector bundles.

The present study is supported in part by Korea Science and Engineering Foundation Grant No. 951-0105-005-2 and the Basic Science Research Institute Program, Ministry of Education 1994, Project No. BSRI-94-1424.

G=1) any map from S^n to S^1 , S^2 , or S^4 can be approximated by entire rational maps, see [BK1].

In this paper we use Corollary 1.4 and some G vector bundle theory to find a necessary and sufficient condition for a G map from X to Grassmann G variety to be approximated by entire rational G maps. Namely, we have the following theorem which is an equivariant generalization of Lemma 14 of [Iv].

THEOREM 2.4. Let X be a compact nonsingular real algebraic G variety. Then a C^r G-map $f: X \to G_{\Lambda}(\Xi, k)$ can be approximated by entire rational G maps in C^{ρ} topology for $0 \le \rho \le r \le \infty$ and $\rho < \infty$ if and only if the G Λ -vector bundle ξ having f as the classifying map is C^r G isomorphic to a strongly algebraic G vector bundle.

We apply Theorem 2.4 to complex G vector bundles over the unit spheres of unitary representations of abelian group G to have the following:

THEOREM 3.3. Let G be an abelian group. Let E and W be any unitary representation of G. Then $\mathcal{R}(S(E), G_{\mathbb{C}}(W, k))^G$ is dense in $\mathcal{C}^r(S(E), G_{\mathbb{C}}(W, k))^G$ with \mathcal{C}^ρ topology for $0 \le \rho \le r \le \infty$ and $\rho < \infty$.

By considering complex line bundles we have the following extension of the results in [BK1] as a special case of Theorem 3.3.

THEOREM 3.5. Let G be an abelian group. Let E be any unitary representation of G and V a unitary 1-dimensional representation of G. Then $\mathcal{R}(S(E), S(V \oplus \mathbb{R}))^G$ is dense in $\mathcal{C}^r(S(E), S(V \oplus \mathbb{R}))^G$ with \mathcal{C}^ρ topology for $0 \le \rho \le r \le \infty$ and $\rho < \infty$.

1. Equivariant polynomial approximations

Let Ξ and Ω be representations of G. A polynomial G map $f:\Xi\to\Omega$ is a G map of the form $f=(f_1,\ldots,f_m)$ where each f_i is a polynomial for $0 \le i \le m$ and $m=\dim\Omega$. For $0 \le r \le \infty$ let $C^r(\Xi,\Omega)$ denote the set of all C^r maps from Ξ to Ω . Let $\mathcal{P}(\Xi,\Omega)$ be the subset of all polynomial maps from Ξ to Ω . The C^ρ topology on $C^r(\Xi,\Omega)$ for $0 \le \rho \le r$ is the topology defined as follows. For a multi-index $s=(s_1,\ldots,s_n)$ with

 $n = \dim \Xi$ and $f \in \mathcal{C}^r(\Xi, \Omega)$ let

$$D^s = \frac{\partial^{|s|}}{\partial x_{1^{s_1}} \cdots \partial x_n^{s_n}}$$

where $|s| = s_1 + \cdots + s_n$. For $n \in \mathbb{N}$ let K_n denote the disk of radius n in Ξ centered at the origin. Let $N_{K_n,\rho}$ be the semi-norm on the set $\mathcal{C}(\Xi,\Omega)$ defined by

$$N_{K_n,\rho}(f) = \sup_{x \in K_n, 0 \le |s| \le \rho} |D^s(f)|.$$

Then the C^{ρ} topology on $C(\Xi, \Omega)$ is the smallest topology so that $N_{K_n, \rho}$ are continuous for all K_n . The following theorem is well known.

THEOREM 1.1. Let $0 \le r \le \infty$. Then $\mathcal{P}(\Xi, \Omega)$ is dense in $\mathcal{C}^r(\Xi, \Omega)$ with C^{ρ} topology for $0 \le \rho \le r$.

PROOF. See Corollary 4 of Theorem 15.3 of [Tr]. \Box

We now generalize this theorem for equivariant case. We first need the following averaging operator. Since G is compact there is the Haar measure of G which is denoted by dg. For any $f: \Xi \to \Omega$ define

$$A(f)(x) = \int_G g^{-1} f(gx) \, dg$$

for $x \in \Xi$. If G is a finite group, this averaging operator is nothing but

$$A(f)(x) = \frac{1}{|G|} \sum_{g \in G} g^{-1} f(gx).$$

Here are some basic properties of the operator A.

PROPOSITION 1.2. Let G be a compact Lie group, and let Ξ and Ω be representations of G. Let $A: \mathcal{C}^r(\Xi,\Omega) \to \mathcal{C}^r(\Xi,\Omega)$ be defined as above for $0 \le r \le \infty$. Then

- (1) For any $f \in C^r(\Xi, \Omega)$ the map A(f) is a G map. If f is a G map then A(f) = f.
- (2) If f is a polynomial map, then so is A(f).
- (3) If $\Omega = \mathbb{R}^1$ and $f \geq 0$, then $A(f) \geq 0$.

PROOF. See [DMP].

If we define a G action on $C^r(\Xi,\Omega)$ by $g \cdot f(x) = gf(g^{-1}x)$ for $g \in G$ and $f \in C^r(\Xi,\Omega)$, then the fixed point set $C^r(\Xi,\Omega)^G$ is the subspace of all G equivariant C^r maps, and $\mathcal{P}(\Xi,\Omega)^G$ is the subset of all polynomial G maps. We now have the following equivariant generalization of Theorem 1.1.

THEOREM 1.3. $\mathcal{P}(\Xi,\Omega)^G$ is dense in $\mathcal{C}^r(\Xi,\Omega)^G$ with \mathcal{C}^ρ topology for $0 \le \rho \le r \le \infty$ and $\rho < \infty$.

PROOF. Note first that for any $h \in \mathcal{C}^r(\Xi,\Omega)$

$$D^{s}(A(h))(x) = \int_{G} D^{s}(g^{-1}fg(x)) dg.$$

From the formula for higher order partial derivatives of composition if

$$\sup_{x \in K_n, 0 \le |s| \le \rho} |D^s(h)| \le \epsilon$$

then

$$\sup_{x \in K_n, 0 < |s| < \rho} |D^s(g^{-1}hg)| \le C_\rho \epsilon$$

for some constant C_{ρ} which depends only on ρ . Therefore

$$\sup_{x \in K_n, 0 \le |s| \le \rho} |D^s(A(h))| \le C_\rho \epsilon.$$

Let $f: \Xi \to \Omega$ be a G equivariant C^r map. Theorem 1.1 implies that for a given $\epsilon > 0$ and K_n there exists a polynomial map $p: \Xi \to \Omega$ such that

$$\sup_{x \in K_n, 0 \le |s| \le \rho} |D^s(f - p)| \le \epsilon.$$

From the argument above and Proposition 1.2 (2) we have

$$\sup_{x\in K_n, 0\leq |s|\leq \rho} |D^s(f-A(p))| = \sup_{x\in K_n, 0\leq |s|\leq \rho} |D^s(A(f-p))| \leq C_\rho \epsilon.$$

Since $A(p) \in \mathcal{P}(\Xi, \Omega)^G$ we are done. \square

Let X and Y be two nonsingular real algebraic G varieties in orthogonal representations Ξ and Ω respectively. Since X and Y are nonsingular they are \mathcal{C}^{∞} G manifolds. For $0 \leq r \leq \infty$ let $\mathcal{C}^r(X,Y)^G$ be the set of all \mathcal{C}^r G maps from X to Y. Since any \mathcal{C}^r G map $f: X \to Y$ can be extended to \mathcal{C}^r G maps $\hat{f}: \Xi \to \Omega$ we can identify $\mathcal{C}^r(X,Y)^G$ with the subspace

$$\mathcal{C}^r(\Xi,\Omega)^G_{(X,Y)} = \{ \tilde{f} : \Xi \to \Omega \mid \tilde{f} \text{ is a chosen extension of } f \in \mathcal{C}^r(X,Y)^G \}$$

of $\mathcal{C}^r(\Xi,\Omega)$. Then for $0 \leq \rho \leq r$ the \mathcal{C}^ρ topology on $\mathcal{C}^r(X,Y)^G$ is the topology induced from the \mathcal{C}^ρ topology on $\mathcal{C}^r(\Xi,\Omega)$ via the identification $\mathcal{C}^r(X,Y)^G$ with $\mathcal{C}^r(\Xi,\Omega)^G_{(X,Y)}$.

A G map $f: X \to Y$ is called a polynomial G map if there exists a polynomial map $p: \Xi \to \Omega$ such that $p|_X = f$. By Proposition 1.2 (2) we can assume that p is a polynomial G map. Let $\mathcal{P}(X,Y)^G$ denote the subset of all polynomial G maps from X to Y. We say that a \mathcal{C}^r G map $f: X \to Y$ is approximated by polynomial G maps in \mathcal{C}^ρ topology for $0 \le \rho \le r \le \infty$ if for a given $\epsilon > 0$ there exists $\rho \in \mathcal{P}(X,Y)^G$ such that

$$\sup_{x \in X, 0 \le |s| \le \rho} |D^s(f - p)| \le \epsilon.$$

An immediate consequence of Theorem 1.3 is the following.

COROLLARY 1.4. Let X be a compact nonsingular real algebraic G variety, and let Ω be a representation of G. The any C^r G map from X to Ω can be approximated by polynomial maps in C^ρ topology for $0 \le \rho \le r \le \infty$ and $\rho < \infty$. \square

2. Entire rational G maps

Let X be a subspace of Euclidean space \mathbb{R}^n . A map $f: X \to \mathbb{R}^m$ is said to be *entire rational* if there exist polynomial maps $P: \mathbb{R}^n \to \mathbb{R}^m$ and $Q: \mathbb{R}^n \to \mathbb{R}$ such that f(x) = P(x)/Q(x) for all $x \in X$ and $Q^{-1}(0) \cap X = \emptyset$. Let Ξ and Ω be representations of G, and let X be a G invariant subspace of Ξ . If a G map $f: X \subset \Xi \to \Omega$, viewed as the underlying non-equivariant map, is entire rational, we call f an *entire rational* G map.

The following proposition is an interesting observation.

PROPOSITION 2.1. Let X be a real algebraic G variety in Ξ . If $f: X \subset \Xi \to \Omega$ is an entire rational G map in Ξ , then there exist polynomial G maps $P': \Xi \to \Omega$ and $Q': \Xi \to \mathbb{R}$ such that f(x) = P'(x)/Q'(x) for all $x \in X$ and Q' does not vanish on Ξ .

PROOF. Let f=P/Q where $P:\Xi\to\Omega$ and $Q:\Xi\to\mathbb{R}$ are polynomial maps such that Q does not vanish on X. Here P and Q are not necessarily G equivariant. Since X is a real algebraic variety there exists a polynomial $h:\Xi\to\mathbb{R}$ such that $h^{-1}(0)=X$. We now consider the map $(PQ)/(Q^2+h^2)$. Since h vanishes on X the map $(PQ)/(Q^2+h^2)$ is equal to P/Q on X. Take the average

$$P' = A(PQ)$$
$$Q' = A(Q^2 + h^2).$$

Since $Q^2 + h^2 > 0$ on Ξ its average $Q' = A(Q^2 + h^2) > 0$ on Ξ . Thus Q' does not vanish on Ξ , and P' and Q' are G equivariant polynomials. It is clear that f(x) = P'(x)/Q'(x) for all $x \in X$. \square

The following proposition asserts that a G map which is locally entire rational is an entire rational G map.

PROPOSITION 2.2. Let X be a real algebraic G variety on Ξ . Let U_1, \ldots, U_k be Zariski open subsets of X such that $X = \bigcup_{i=1}^k U_i$. Let $f: X \to Y \subset \Omega$ be a G map such that $f|_{U_i}$ are entire rational for all $i = 1, \ldots, k$. Then f is an entire rational G map.

PROOF. Let $f|_{U_i} = P_i/Q_i$ where $P_i : \Xi \to \Omega$ and $Q_i : \Xi \to \mathbb{R}$ are polynomials such that Q_i does not vanish on U_i . Since U_i are Zariski open subset of X there exists an algebraic subvariety $V_i \subset X$ such that $U_i = X + V_i$. Let $g_i : \Xi \to \mathbb{R}$ be a polynomial map such that $g_i^{-1}(0) = V_i$. Let $P'_i = g_i P_i$ and $Q'_i = g_i Q_i$. Then $Q'_i(0) \cap X = V_i$ and

$$f|_{U_i} = (\frac{P_i}{Q_i})|_{U_i} = (\frac{P_i'}{Q_i'})|_{U_i}.$$

Therefore by replacing P_i and Q_i by P_i' and Q_i' respectively, if necessary, we may assume that $Q_i^{-1}(0) \cap X = V_i$. Note that if $\lambda = a_1/b_1 = \cdots =$

 a_l/b_l then $\lambda = (a_1 + \dots + a_l)/(b_1 + \dots + b_l)$. Since $f(x) = P_i(x)/Q_i(x) = P_i(x)Q_i(x)/Q_i^2(x)$ for all $x \in U_i$ it follows that for all $x \in U_i$

$$f(x) = \frac{\sum_{i=1}^{l} P_i(x) Q_i(x)}{\sum_{i=1}^{l} Q_i^2(x)}.$$

However the righ-hand side of the above equation is independent of the index i. Therefore we can see that the

$$f(x) = \frac{\sum_{i=1}^{l} P_i(x)Q_i(x)}{\sum_{i=1}^{l} Q_i^2(x)}$$

for all $x \in X$. Since the denominator of the right-hand side does not vanish on X the map f is an entire rational G map. \square

Let Λ stand for \mathbb{R} , \mathbb{C} , or \mathbb{H} . Let Ξ be a representation of G over Λ , in particular, its underlying space is Λ^n for some n. We assume that the action of G preserves the standard bilinear form on Λ^n over Λ . Let $\operatorname{End}_{\Lambda}(\Xi)$ denote the set of endomorphisms of Ξ over Λ . It is a representation of G with the action given by

$$G \times \operatorname{End}_{\Lambda}(\Xi) \to \operatorname{End}_{\Lambda}(\Xi)$$
 with $(g, L) \mapsto gLg^{-1}$.

Let k be a natural number. We set

$$G_{\Lambda}(\Xi, k) = \{ L \in \operatorname{End}_{\Lambda}(\Xi) \mid L^{2} = L, \ L^{*} = L, \ \operatorname{trace} L = k \}$$

$$E_{\Lambda}(\Xi, k) = \{ (L, u) \in \operatorname{End}_{\Lambda}(\Xi) \times \Xi \mid L \in G_{\Lambda}(\Xi, k), \ Lu = u \}.$$

Here L^* denotes the adjoint of L. If one chooses an orthonormal (resp. unitary or symplectic) basis of Ξ , then $\operatorname{End}_{\Lambda}(\Xi)$ is canonically identified with the set of $n \times n$ matrices Λ^{n^2} , and L^* is obtained by transposing L and conjugating its entries. Since each element of $G_{\Lambda}(\Xi, k)$ is an orthogonal projection of Ξ onto a k dimensional subspace of Ξ , we can identify $G_{\Lambda}(\Xi, k)$ with the Grassmann manifold of k dimensional subspaces of Ξ . This description specifies $G_{\Lambda}(\Xi, k)$ and $E_{\Lambda}(\Xi, k)$ as real algebraic G varieties. Define $p: E_{\Lambda}(\Xi, k) \to G_{\Lambda}(\Xi, k)$ as projection on the first factor. This defines a G vector bundle, which is called the universal bundle over $G_{\Lambda}(\Xi, k)$, and which is denoted by $\gamma_{\Lambda}(\Xi, k)$.

DEFINITION. A strongly algebraic G vector bundle over Λ is a pair (X,μ) where X is a real algebraic G variety and $\mu: X \to G_{\Lambda}(\Xi,k)$ is an entire rational G map. Assuming that Ξ is a summand of a representation Ξ' of G, we have an embedding $i: G_{\Lambda}(\Xi,k) \to G_{\Lambda}(\Xi',k)$. In this sense we identify the strongly algebraic G vector bundles (X,μ) and $(X,i\mu)$.

Let $V_{\Lambda}(\Xi, k)$ denote the subset of $(\Xi)^k$ which consists of k linearly independent vectors of Ξ . The Stiefel manifold $V_{\Lambda}(\Xi, k)$ has the obvious G action induced from the G action on Ξ . Let $\pi: V_{\Lambda}(\Xi, k) \to G_{\Lambda}(\Xi, k)$ be the map which associates to each collection of vectors the orthogonal projection of Ξ on to the subspace spanned by the vectors. Then π is clearly a G map.

PROPOSITION 2.3. The map $\pi: V_{\Lambda}(\Xi, k) \to G_{\Lambda}(\Xi, k)$ is an entire rational G map.

PROOF. Let $V_{\Lambda}^{0}(\Xi, k) \subset V_{\Lambda}(\Xi, k)$ be the set of orthogonal k vectors of Ξ . We first claim that $\pi|_{V_{\Lambda}^{0}(\Xi, k)}$ is entire rational. If $(v_{1}, \ldots, v_{k}) \in V_{\Lambda}^{0}(\Xi, k)$, then $\pi(v_{1}, \ldots, v_{k})$ is an orthogonal projection $P: \Xi \to \Xi$ which maps Ξ onto the space spanned by v_{1}, \ldots, v_{k} . Then

$$P(x) = \sum_{i=1}^{k} \frac{(x, v_i)}{(v_i, v_i)} v_i$$

for $x \in \Xi$. Therefore π is clearly an entire rational map. Now we perform the Gram-Schmidt orthogonalization process to a collection of linearly independent vectors (v_1,\ldots,v_k) . Let $GS:V_\Lambda(\Xi,k)\to V_\Lambda^0(\Xi,k)$ be the Gram-Schmidt orthogonalization map. If $GS(v_1\ldots,v_k)=(v_1',\ldots,v_k')$, then $v_1'=v_1$ and $v_j'=v_j-\sum_{i=1}^{k-1}\alpha_iv_i$ where $\alpha_i=(v_j,v_i')$ for $j=2,\ldots,k$. This formula shows that GS is entire rational. The map π is nothing but the composition $\pi|_{V_{\alpha}^0(\Xi,k)}\circ GS$, which is entire rational. \square

For two nonsingular real algebraic G varieties $X \in \Xi$ and $Y \in \Omega$ let $\mathcal{R}(X,Y)^G$ denote the subset of all entire rational G maps from X to Y. By Proposition 2.1 any $f \in \mathcal{R}(X,Y)^G$ can be extended to $P'/Q' : \Xi \to \Omega$ where P' and Q' are polynomial G maps and Q' does not vanish on Ξ . Therefore we can embed $\mathcal{R}(X,Y)^G$ as a subspace of $C^r(X,Y)^G$ with C^ρ

topology for $0 \le \rho \le r \le \infty$. We say that a \mathcal{C}^r G map $f: X \to Y$ is approximated by entire rational G maps in \mathcal{C}^ρ topology for $0 \le \rho \le r \le \infty$ if for a given $\epsilon > 0$ there exists $q \in \mathcal{R}(X,Y)^G$ such that

$$\sup_{x \in X, 0 \le |s| \le \rho} |D^s(f - q)| \le \epsilon.$$

THEOREM 2.4. Let X be a compact nonsingular real algebraic G variety. Then a C^r G-map $f: X \to G_{\Lambda}(\Xi, k)$ can be approximated by entire rational G maps in C^{ρ} topology for $0 \le \rho \le r \le \infty$ and $\rho < \infty$ if and only if the G Λ -vector bundle ξ having f as the classifying map is C^r G isomorephic to a strongly algebraic G vector bundle.

PROOF. If $f: X \to G_{\Lambda}(\Xi, k)$ can be approximated by an entire rational G map $f': X \to G_{\Lambda}(\Xi, k)$ in \mathcal{C}^{ρ} topology, then f is G homotopic to f'. Therefore $\xi = f^*(\gamma_{\Lambda}(\Xi, k))$ is \mathcal{C}^{ρ} G isomorphic to $\xi' = f'^*(\gamma_{\Lambda}(\Xi, k))$ which is a strongly algebraic G vector bundle. Conversely, suppose $\xi = f^*(\gamma_{\Lambda}(\Xi, k))$ is \mathcal{C}^{ρ} G isomorphic to a strongly algebraic G vector bundle $\eta = g^*(\gamma_{\Lambda}(\Xi', k))$ where $g: X \to G_{\Lambda}(\Xi', k)$. Let E_{ξ} and E_{η} be the total space of ξ and η respectively. Let $d: E_{\eta} \to E_{\xi}$ be the \mathcal{C}^{ρ} G diffeomorphism which is induced from the G isomorphism $\eta \to \xi$. Define a G action on $\text{Hom}(\Xi',\Xi)$ by conjugation: for $g \in G$ and $L \in \text{Hom}(\Xi',\Xi)$ define $g \cdot L = gLg^{-1}$. Then $\text{Hom}(\Xi',\Xi)$ is a representation of G. Define a G map $K: X \to \text{Hom}(\Xi',\Xi)$ by

$$K(x)(y) = pr_2 \circ d(x, g(x)y)$$

for $x \in X$, $y \in Y$ and $pr_2 : X \times \Xi \to \Xi$ is the projection. We note that the rank of K(x) is k for all $x \in X$. By Corollary 1.4 we can approximate K by a polynomial G map $K' : X \to \operatorname{Hom}_{\Lambda}(\Xi',\Xi)$ in \mathcal{C}^{ρ} topology. Define a G-map $L : X \to \operatorname{Hom}_{\Lambda}(\Xi',\Xi)$ by

$$L(x)(y) = K'(x)(g(x)y).$$

Since K' is a close approximation of K in \mathcal{C}^r topology we can still assume that the rank of L(x) is k for all $x \in X$. Therefore for each $x \in X$ the image Im L(x) is a k dimensional subspace of Ξ . Hence we can define $f': X \to G_{\Lambda}(\Xi, k)$ by letting f'(x) to be the orthogonal projection of Ξ

onto Im L(x). Then f' is a G map which clearly approximates f in C^{ρ} topology. It remains to prove that f' is entire rational. Let $\{e_1, \ldots, e_n\}$ be a basis for Ξ' . If $x \in X$ and the vectors $L(x)(e_{i_1}), \ldots, L(x)(e_{i_k})$ are linearly independent, then f'(x) is the orthogonal projection of Ξ onto the subspace spanned by $L(x)(e_{i_1}), \ldots, L(x)(e_{i_k})$. Let X_i be the set of those $x \in X$ for which $L(x)(e_{i_1}), \ldots, L(x)(e_{i_k})$ are linearly independent. Then $f': X - X_i \to G_{\Lambda}(\Xi, k)$ is an entire rational map because it is the composition $\pi \circ L$ where π is the map in Proposition 2.3. It is easy to see that for each i the set X_i is an algebraic subvariety of X. Let $U_i = X - X_i$. Then $f'|_{U_i}$ is rational for all i and $\bigcup U_i = X$. Therefore f' is entire rational by Proposition 2.2. Hence f' is an entire rational G map which approximates f in C^{ρ} topology. \square

3. Equivariant entire rational approximations

In this section we apply the result of the previous section to complex vector bundles on spheres, and find some approximation result of G maps between G varieties. We need the following propositions.

PROPOSITION 3.1. Let G be an abelian group, and let E be a unitary representation of G. Then any complex vector bundles over the unit sphere S(E) is stably trivial.

PROOF. From Thom isomorphism theorem in K_G -theory we have the exact sequence

$$0 \to K^1_G(S(E)) \to R(G) \to R(G) \overset{\phi}{\to} K^0_G(S(E)) \to 0.$$

See Corollary 2.7.5 of [At]. Here $\phi: R(G) \to K_G^0(S(E))$ is induced from the map which assigns to each G representation V the trivial G vector bundle $S(E) \times V$ over S(E). \square

PROPOSITION 3.2. If a G vector bundle ξ over a nonsingular real algebraic variety X is stably trivial, then ξ is C^{∞} G isomorphic to a strongly algebraic G vector bundle.

PROOF. See lemma 2.1.4 of [DMS].

As an immediate consequence of Theorem 2.3, Proposition 3.1, and Proposition 3.2 we have the following.

THEOREM 3.3. Let G be an abelian group. Let E and W be any unitary representation of G. Then $\mathcal{R}(S(E), G_{\mathbb{C}}(W,k))^G$ is dense in $\mathcal{C}^r(S(E), G_{\mathbb{C}}(W,k))^G$ with \mathcal{C}^ρ topology for $0 \le \rho \le r \le \infty$ and $\rho < \infty$. \square

An entire rational G map $f: X \to Y$ between two real algebraic G varieties is called a birational G isomorphism if f has the entire rational G inverse.

LEMMA 3.4. Let G be an abelian group. For a given unitary 1-dimensional representation V of G there exists a unitary 2-dimensional representation W of G such that the unit sphere $S(V \oplus \mathbb{R})$ is G birationally isomorphic to $G_{\mathbb{C}}(W,1)$. Conversely, for a given unitary 2-dimensional representation W of G there exists unitary 1-dimensional representation V of G such that $G_{\mathbb{C}}(W,1)$ is G birationally isomorphic to the 2-dimensional unit sphere $S(V \oplus \mathbb{R})$.

PROOF. Let V be a 1-dimensional unitary representation of G. Define $\phi: S(V \oplus \mathbb{R}) \to G_{\mathbb{C}}(\mathbb{C}^2, 1)$ by

$$\phi(u,\alpha) = \frac{1}{2} \begin{pmatrix} 1 - \alpha & \overline{u} \\ u & \overline{1 + \alpha} \end{pmatrix}$$

for $(u, \alpha) \in S(V \oplus \mathbb{R})$. Here

$$G_{\mathbb{C}}(\mathbb{C}^2,1) = \left\{ \begin{pmatrix} \alpha & \overline{\beta} \\ \beta & 1-\alpha \end{pmatrix} \mid \alpha \in [0,1], \beta \in \mathbb{C}, \|\beta\|^2 = \alpha(1-\alpha) \right\}.$$

Then ϕ is clearly a polynomial map which has the inverse $\psi: G_{\mathbb{C}}(\mathbb{C}^2, 1) \to S(V \oplus \mathbb{R})$ such that

$$\psi\left(\left(\begin{matrix}\alpha & \overline{\beta} \\ \beta & 1-\alpha\end{matrix}\right)\right) = (1-2\alpha, 2\beta).$$

It remains to prove that there exists a unitary representation structure W of G on \mathbb{C}^2 such that if $G_{\mathbb{C}}(\mathbb{C}^2,1)=G_{\mathbb{C}}(W,1)$ has the induced action of G defined by $g\cdot A=gAg^{-1}$ for $g\in G$ and $A\in G_{\mathbb{C}}(W,1)$, then the map ϕ and ψ are G-equivariant. Let U be any 2-dimensional unitary representation of G. Since G is abelian U is a direct sum of 1-dimensional irreducible representations. Then for $g\in G$ and $(x,y)\in \mathbb{C}^2$ we may assume that

 $(g \cdot (x,y))^t = \begin{pmatrix} e^{i\theta_1(g)} & 0 \\ 0 & e^{i\theta_2(g)} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

for some $0 \leq \theta_1(g), \theta_2(g) < 2\pi$. Therefore the induced action of G on $G_{\mathbb{C}}(U,1)$ is defined as follows: for $g \in G$ and $A = \begin{pmatrix} \alpha & \overline{\beta} \\ \beta & 1 - \alpha \end{pmatrix} \in G_{\mathbb{C}}(U,1)$

$$g \cdot A = \begin{pmatrix} e^{i\theta_1(g)} & 0 \\ 0 & e^{i\theta_2(g)} \end{pmatrix} \begin{pmatrix} \alpha & \overline{\beta} \\ \beta & 1 - \alpha \end{pmatrix} \begin{pmatrix} -i\theta_1(g) & 0 \\ 0 & e^{-i\theta_2(g)} \end{pmatrix}$$
$$= \begin{pmatrix} \alpha & \overline{e^{i(\theta_1(g) - \theta_2(g))}\beta} \\ e^{i(\theta_1(g) - \theta_2(g))}\beta & 1 - \alpha \end{pmatrix}$$

Since V is a 1-dimensional unitary representation of G there exists $0 \le \omega(g) < 2\pi$ such that $gv = e^{i\omega(g)}v$ for $g \in G$ and $v \in V$. If we choose a 2-dimensional unitary representation W of G such that $\theta_1(g) - \theta_2(g) = \omega(g)$, where $\theta_1(g)$ and $\theta_2(g)$ are the numbers as above, then with the induced G action on $G_{\mathbb{C}}(W,1)$ the maps ϕ and ψ are G equivariant. The second statement of the lemma can be proved similarly. \square

THEOREM 3.5. Let G be an abelian group. Let E be any unitary representation of G, and V a unitary 1-dimensional representation of G. Then $\mathcal{R}(S(E), S(V \oplus \mathbb{R})^G)$ is dense in $\mathcal{C}^r(S(E), S(V \oplus \mathbb{R}))^G$ with \mathcal{C}^ρ topology for $0 \le \rho \le r \le \infty$ and $\rho \le \infty$.

PROOF. The theorem follows from Theorem 3.3, and Lemma 3.4. \Box

References

[At] M. Atiyah, K-theory, Benjamin Inc., 1967.

- [BK1] J. Bochnak and W. Kucharz, Algebraic approximation of mappings into spheres, Michigan Math. J. 43 (1979), 119-125
- [BK3] J. Bochnak and W. Kucharz, On real algebraic morphisms into even-dimensional spheres, Annals of Math. 128 (1988), 415-433.
- [DMP] K. H. Dovermann, M. Masuda, and T. Petrie, Fixed point free algebraic actions on varieties diffeomorphic to \mathbb{R}^n , Topological methods in algebraic transformation groups (H. Kraft, T. Petrie, and G. Schwarz, eds.), Progress in Mathematics, Vol. 80, Birkhäuser, Boston, Basel, Berlin, 1989, pp. 49-80.
- [DMS] K. H. Dovermann, M. Masuda, and D. Y. Suh, Algebraic realization of equivariant vector bundles, J. reiner angewandte Math. 448 (1994), 31-64.
- [Iv] N. V. Ivanov, Approximation of smooth manifolds by real algebraic sets, Russian Math. Surveys 37:1 (1982), 1-59.
- [Tr] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York London, 1967.
- [Wo] R.Wood, Polynomial maps from spheres to spheres, Inventiones math. 5 (1968), 163-168.

Department of Mathematics Korea Advanced Institute of Science and Technology Taejon, Korea 305-701 e-mail: dysuh@math.kaist.ac.kr