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EQUIVARIANT ALGEBRAIC
APPROXIMATIONS OF G MAPS

DonGg Youpr Sul

ABSTRACT. Let f be a smooth G map from a nonsingular real algebraic
G variety to an equivariant Grassmann variety. We use some G vector
bundle theory to find a necessary and sufficient condition to approxi-
mate f by an entire rational G map. As an application we algebraically
approximate a smooth G map between G spheres when G is an abelian

group.

0. Introduction

Throughout this paper we let G be a compact Lie group. A real
algebraic G wvariety in an orthogonal representation € is the common
zeros of polynomials py,... ,p, : € — R, which is invariant under the
action of G on §2. We also say that G acts algebraically on V.

Let X and Y be nonsingular real algebraic G varieties. The ques-
tion we are interested in here is the following: when can a given G map
f:X — Y be approximated by polynomial G maps or entire rational
G maps? If X is compact and Y is an orthogonal representation, then
the classical Stone-Weierstrass theorem can be extended equivariantly.
Namely, using Theorem 1.1 which is a version of Stone-Weierstrass theo-
rem and the averaging operator we have Theorem 1.3 and Corollary 1.4.
However if Y is not an orthogonal representation, then approximation
of f by polynomial maps or entire rational maps are not always possi-
ble, see [Wo] and [BI2]. On the other hand, in nonequivariant case (i.e.
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G = 1) any map from 5" to S*, S%, or §* can be approximated by entire
rational maps, see [BK1].

In this paper we use Corollary 1.4 and some G vector bundle theory
to find a necessary and sufficient condition for a G map from X to Grass-
mann G variety to be approximated by entire rational G maps. Namely,
we have the following theorem which is an equivariant generalization of
Lemma 14 of [Iv].

THEOREM 2.4. Let X be a compact nonsingular real algebraic G
variety. Then a C" G-map f : X — GA(Z,k) can be approximated by
entire rational G maps in C” topology for 0 < p < r < oo and p < oo if
and only if the G A-vector bundle £ having f as the classifying map is
C" G isomorphic to a strongly algebraic G vector bundle.

We apply Theorem 2.4 to complex G vector bundles over the unit
spheres of unitary representations of abelian group G to have the follow-
ng:

THEOREM 3.3. Let G' be an abelian group. Let E and W be any
unitary representation of G. Then R(S(E),G¢(W, k) is dense in
CT(S(E),Ge(W, k)Y with C¥ topology for 0 < p < r < oo and p < 00,

By considering complex line bundles we have the following extension
of the results in [BK1] as a special case of Theorem 3.3.

THEOREM 3.5. Let G be an abelian group. Let E be any unitary
representation of G and V' a unitarv 1-dimensional representation of G.
Then R(S(E),S(V & R))“ is dense in C"(S(E),S(V & R))C with C?
topology for 0 < p <r < o0 and p < oo.

1. Equivariant polynomial approximations

Let = and Q2 be representations of G. A polynomial G map f : = —
is a G map of the form f = (fi...., f,) where each f; is a polynomial
for0 <¢<mandm = dimQ. For0 < » < oc let C"(=, Q) denote the set
of all C" maps from = to Q. Let P(=, ) be the subset of all polynomial
maps from = to 2. The C” topology on C"(Z,Q) for 0 < p < r is the
topology defined as follows. For a mwulti index s = (s1,....s,) with
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n=dimZ and f € C7(Z,0) let

sl
D=
('):zrlu coeQagn
where |s| = s; + -+ s,. Forn € N let Iy, denote the disk of radius

n in = centered at the origin. Let Nk, ., be the semi-norm on the set

C(Z,Q) defined by

N, ol f) = sup — [D°(f)].
e, 0<]s|<p

Then the C? topology on C(=, Q) is the smallest topology so that Ny, ,
are continuous for all I\V,,. The following theorem is well known.

THEOREM 1.1. Let 0 < » < oc. Theun P(=.9) is dense in C"(Z, Q)
with C* topology for 0 < p < r.

PROOF. See Corollary 4 of Theorem 15.3 f Tr]. O

We now generalize this theorem for equivariant case. We first need
the following averaging operator. Since G is compact there is the Haar
measure of G which is denoted by dg. For any f: = — Q define

A(f)e) = / o™ Flga) dg
€

for 2 € Z. If G is a finite group, this averaging operator is nothing but

. 1 i
Al )Ne) = el Zgﬂlj(f/.‘z:).

geG

Here are some basic properties of the operator 4.

PROPOSITION 1.2. Let G be a compact Lie group, and let = and ) be
representations of G. Let 4 : C"(Z,Q) — C"(=,Q) be defined as above
for 0 < r < 0o. Then

(1) Forany f € C"(Z,9Q) the map A(f) is a G map. If f is a G map

then A(f)= f.
(2) If f is a polynomial map, then so is A(F).
(3) fQ=R! and f > 0, then A(f) > 0.



952 Dong Youp Suh
PROOF. See [DMP]. O

If we define a G action on C*(Z,Q) by ¢g- f(x) = gf(¢ 'x)for g € G
and f € CT(Z,0), then the fixed point set C"(Z, Q)€ is the subspace of all
G equivariant C" maps, and P(=, Q)¢ is the subset of all polynomial G

maps. We now have the following equivariant generalization of Theorem
1.1.

THEOREM 1.3. P(Z,92)% is dense in CT(Z, )¢ with C? topology for
0<p<r<ooandp < oc.

PROOF. Note first that for any h € C"(Z,Q)
D*(A(M)(x) = [ D(g™" fgla)dg.
G
From the formula for higher order partial derivatives of composition if

sup |ID*(I)] <€
relN, 0<]s|<p

then
sup |ID*(¢™ hg)| < C e
relN, ,0<]s|<p

for some constant C, which depends only on p. Therefore

sup DY (A(M))] £ Cpe.
€N, ,0<]s]|<p

Let f:Z — Q be a G equivariant C” map. Theorem 1.1 implies that
for a given € > 0 and IV, there exists a polynomial map p : = — €2 such
that
sup |D*(f —p) < e
€N, 0<]s|<p

From the argument above and Proposition 1.2 (2) we have

sup  |D°(f = Alp))| = sup  |D*(A(f = p))| < Cpe.

€KL, 0<]s|<p €N, ,0<]s|<p

Since A(p) € P(Z, MY we are done. [
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Let X and Y be two nonsingular real algebraic G varieties in orthogo-
nal representations = and €2 respectively. Since X and Y are nonsingular
they are C* G manifolds. For 0 < r < oo let C7(X,Y )% be the set of
all C" G maps from X to Y. Since any " G map f: X — Y can be
extended to C” G maps f : = — ) we can identify C"(X,Y)% with the
subspace

CT(E,Q)E\»'Y) ={f:Z > Q| fisa chosen extension of f € C"(X, ¥)¢)

of C"(Z,2). Then for 0 < p < » the C” topology on C"(X,Y )% is the
topology induced from the C? topology on CT(Z . ) via the identification
CT(X,Y)% with C"(Z, Q)% ..

AGmap f: X — Y is called a polynomial G map if there exists a
polynomial map p : = — Q such that p|y = f By Proposition 1.2 (2)
we can assume that p is a polynomial G map. Let P(X,Y) denote the
subset of all polynomial G maps from X to Y. We say that a C" G map
f X — Y is approximated by polynomial G maps in C* topology for
0<p<r<ocifforagiven € > 0 there exists » € P(X, Y)Y such that

sup |D(f—p) <e.
FENOL| 8| <

An immediate consequence of Theorem 1.3 is the following.

COROLLARY 1.4. Let X be a compact nonsingular real algebraic G
variety, and let Q De a represeutation of G. The any C" G map from
X to Q can be approximated by polynomial aps in C? topology for
0<p<r<ocandp<oc. [

2. Entire rational G maps

Let X be a subspace of Euclidean space R". A map f: X — R” is
said to be entire retional if there exist polynomial maps P : R" — R™
and  : R" — R such that f(o) = P(2)/Q(x) for all + € X and
Q710)NX = 0. Let = and Q be representations of G and let X he a
G mvariant subspace of Z. If a G map f: X C = — Q . viewed as the
underlying non-equivariant map. is entive rational, we call f an entire
rational G map.

The following proposition is an iuteresting observation.
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PROPOSITION 2.1. Let X be a real algebraic G variety in =. If f :
X C E — Qis an entire rational G map in =, then there exist polynomial
G maps P' : Z — Q and Q' : = — R such that f(z) = P'(2)/Q'(z) for
all z € X and ()' does not vanish on =.

PrROOF. Let f = P/} where P: = — Q and @ : = — R are polyno-
mial maps such that @ does not vanish on X. Here P and () are not
necessarily G equivariant. Since X is a real algebraic variety there exists
a polynomial & : = — R such that 27'(0) = X. We now consider the
map (PQ)/(Q* + h?). Since h vanishes on X the map (PQ)/(Q* + h?)
is equal to P/Q on ‘\ . Take the average

P' = A(PQ)
Q' =AQ" +17)

Since Q% + h? > 0 on T its average Q' = A(Q* + %) >> 0 on Z. Thus Q'
does not vanish on :, and P and Q' are G equivariant polynomials. It

is clear that f(2) = P'(2)/Q' () forall v € X. O

The following proposition asserts that a G map which is locally entire
rational is an entire rational G map.

PROPOSITION 2.2. Let X Dbe a real algebraic G wvariety on =. Let
Uy, ... ,Ur be Zariski open subsets of X such that X = Ule U,. Let
f:X =Y CQ beaG wap such that fly, are entire rational for all

t=1,...,k. Then f is an entire rational G map.

PROOF. Let flu, = P,/Q; where P i = — Q and ; : = — R are
polynomials such that ), does not vauish on U;. Since U; are Zariski
open subset of X there exists an algebraic subvariety V; C X such that
U, = X=V;. Let g; : T — R be a polynomial map such that g{'l(()] = V.
Let P} = ¢;P; and Q) = ¢;Q;. Then Q(0)N X =V} aund

P P!
flo, = (=) = (=5

g i =g

1N
T

Therefore by replacing P; and Q; by P/ and @)} respectively, if necessary,
we may assume that Ql-l(()) NX =V, Note that if \ =a1/by =+ =
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ai/by then A = (a1 +---+a;)/(by +---+b). Since f(2) = Pi(2)/Qi(z) =
Pi(x)Qi(2)/QF(z) for all € U; it follows that for all z € U,
_ Y P@)Qi(a)

Sizt Q)

However the righ-hand side of the above equation is independent of the
index :. Therefore we can see that the

_ S Pix)Qi(a)
Zf:J sz(l)

for all z € X. Since the denominator of the right-hand side does not
vanish on X the map f is an entire rational G map. [

flx)

fla)

Let A stand for R, C, or H. Let = be a representation of G over
A, in particular, its underlying space is A" for some n. We assume
that the action of G preserves the standard bilinear form on A" over
A. Let Ends(E) denote the set of endomorphisms of = over A. It is a
representation of G with the action given by

G x Enda(Z) — Eudy(Z) with (¢,L)— gLg™".
Let k be a natural number. We set

GaA(E.k)={L € Eady(Z)|L* =L, L* = L, trace L = k}
EA(Z,k) = {(L,u) € Endr(Z) x Z| L € GA(Z, k), Lu=u}.

Here L* denotes the adjoint of L. If one choos:s an orthonormal (resp.
unitary or symplectic) basis of Z. then Endy(Z1 is canonically identified
with the set of n x n matrices A" . and L* is obtained by transposing L
and conjugating its entries. Since cach element of G (=, k) is an orthog-
onal projection of = onto a & dimensional subspace of =, we can identify
GA(Z, k) with the Grassmann manifold of & dimensional subspaces of =,
This description specifies Gy (Z. 1) and E\(Z.4) as real algebraic G va-
rieties. Define p : E5(Z. k) — GA(Z. k) as projection on the first factor.
This defines a G vector bundle. whicli is called the wniversal bundle over
GA(Z, k), and which is denoted by 4 (Z. k).
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DEFINITION. A strongly algebraic G vector bundie over A is a pair
(X, ) where X Is a real algebraic G variety and u - X — Ga(Z,k) is
an entire rational G map. Assuming that = Is a suunmand of a repre-
sentation Z' of G, we have an embedding i : GA(Z,k) — GA(Z', k). In
this sense we identify the strougly algebraic G vector bundles (X, i) and

(X, o).

Let VA(Z,k) denote the subset of ()% which consists of & linearly
independent vectors of =. The Stiefel manifold V4 (Z, k) has the obvious
G action induced from the G action on Z. Let 7 : VA(Z, k) — Ga(Z, k)
be the map which associates to each collection of vectors the orthogonal
projection of = on to the subspace spanned by the vectors. Then 7 is
clearly a G map.

PrOPOSITION 2.3. The map 7 : Vi(Z. k) — GA(Z.k) is an entire
rational G map.

PROOF. Let VY(Z. k) C Vi(Z. k) be the set of orthogonal & vectors
of Z. We first claim that 7lvo(z k) is entire rational I (v1.... L vk) €

VIZ, k), then w(vy.... o) is au orthogonal projection P : = — =
A B
which maps = onto the space spauned by ¢y, ... .vx. Then

A.

.

{a.ey)
Plr)= 2 , v;
: RV
t=1

for z € =. Therefore 7 is clearly an cutive rational map. Now we perform
the Gram-Schmidt orthogonalization process to a collection of linearly
independent vectors (vy,... ,vx). Let GS : Va(=, k) — V\O(E, k) be the
Gram-Schmidt orthogonalization map. If GS(vy ..., 00) = (v.... ,v}),
then v] = vy and ’U} = 'vj—Zf;l ajv; where a; = (v el)fory =2,... k.
This formula shows that GS is entire rational. The map = is nothing
but the composition ’/T[‘,"S(E',‘.) o GS. whiclt 1s entire rational. [

For two nonsingular real algebraic G varieties X ¢ Z and Y7 C Q let
R(X,Y)" denote the subset of all entire rational G maps from X to Y.
By Proposition 2.1 any f € R(X.Y )% can be extended to P'/Q' : = —
where P’ and Q' are polynomial G maps and Q' does not vanish on Z.
Therefore we can embed R{X. 1) as a subspace of C"(X, Y)Y with C”
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topology for 0 < p < r < oc. We say that a C" Gmap f: X — Y is
approximated by entire rational G maps in C” wopology for 0 < p <r <
oo if for a given € > 0 there exists ¢ € R(X,Y )" such that

sup  |DY(f—-g)f <e
TEN UL s <p

THEOREM 2.4. Let X be a compact nonsingular real algebraic G
variety. Then a C" G-map f : X — Ga(Z,k) can be approximated by
entire rational G maps in C* topology for 0 < p < r < oc and p < oo if
and only if the G A-vector bundle £ having [ as the classifying map is
C" G isomorephic to a strongly algebraic G vector bundle.

ProoF. If f: X — G (Z. k) can be approximated by an entire ratio-
nal G map f': X — GA(Z. k) in C? topology, then f is G homotopic to
f'. Therefore £ = f*(7a(Z. k%)) is C¥ G isomorphic to &' = f"(7a(E,k))
which is a strongly algebraic G vector bundle. Conversely, suppose
£ = f*(va(Z,k)) is C? G isomorphic to a strongly algebraic G vector
bundle n = ¢g*(yA(Z'. k) where ¢ : X — GA(Z', k). Let E¢ and E, be
the total space of £ and »y respectively. Let d 1 E, — E¢ be the C? G
diffeomorphism which is induced from the G isomorphism y — €. Define
a G action on Hom(=', =) by conjugation: for ¢ € G and L € Hom(Z', =)
define ¢ - L = gLg~}'. Then Hom(='.Z) is a representation of G. Define
a G map I : X — Hom(Z'.Z) by

Kle)(y) = proodie,glaiy)

forz € X,y € Y and pro : X x = — Z is the projection. We note
that the rank of A'(x) is & for all + € X. DBy Corollary 1.4 we can
approximate I\ by a polynomial G map L' : X — Homu(Z'.Z) in ¥

—_—y -

topology. Define a G-map L : X — Homy(Z',2) by
Lio)y) = K'(a)gla)y..

Since R’ is a close approximation of i in C” topology we can still assume
that the rank of L(2) 1s k for all € X. Therefore for each 2 € X the
image Im L(z) is a k dimensional subspace of =. Hence we can define
fl e X = Ga(Z, k) by letting /() to be the orthogonal projection of =
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onto Im L(z). Then f'is a G map which clearly approximates f in C”
topology. It remains to prove that f' is entire rational. Let {e;,... ,e,}
be a basis for Z'. If 2 € X and the vectors L{x)(e;, ),... . L(z)(e;, ) are
linearly independent, then f'(x) is the orthogonal projection of = onto
the subspace spanned by L(a)(¢;, ).... ,L{x)(e;, ). Let X, be the set of
those € X for which L(x)(e;,),... , L{x)(ei, ) are linearly independent.
Then f' : X — X; - GA(Z.k) is an entire rational map because it is
the composition 7 o L where 7 is the map in Proposition 2.3. It is easy
to see that for each ¢ the set X; is an algebraic subvariety of X. Let
Ui= X — X;. Then f'|y, is rational for all : and |JU; = X. Therefore
f' is entire rational by Proposition 2.2. Hence f’ is an entire rational G
map which approximates f in C” topology. O

3. Equivariant entire rational approximations

In this section we apply the result of the previous section to complex
vector bundles on spheres. and find some approximation result of G maps
between G varieties. We need the following propositions.

PROPOSITION 3.1. Let G be an abelian group, and let E be a unitary
representation of . Thenu anv complex vector bundles over the umnit

sphere S(E) is stably trivial.

PROOF. From Thom isomorphism theoreni in K'g-theory we have the
exact sequence

0 — NE(S(E)) — R(G) — RG) S KA(S(E)) — 0.

See Corollary 2.7.5 of [At]. Here ¢ : R(G) — K%(S(E)) is induced from
the map which assigns to each G representation 17 the trivial G vector

bundle S(E) x V over S(E). O

PROPOSITION 3.2. If a G vector bundle € over a nonsingular real
algebraic variety X is stably trivial. then £ is C* (' isomorphic to a
strongly algebraic G vector bundle.
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PROOF. See lemma 2.1.4 of [DMS]. O

As an immediate consequence of Theorem 2.3, Proposition 3.1, and
Proposition 3.2 we have the following.

THEOREM 3.3. Let G be an abelian group. Let E and W be any
umtary representation of . Then R(S(E) Go(W, k)¢ is dense in
CT(S(E),Gc(W, k)E with C* topology for 0 < p <r < oc and p < oc.
O

An entire rational G map f: X — 1" between two real algebraic G
varieties is called a birational G isomorphism if f has the entire rational
G inverse.

LEMMA 3.4. Let G be an abelian group. For a given unitary 1-
dimensional representation V' of G there exists a unitary 2-dimensional
representation W of G such that the unit sphere S(V & R) is G bi-
rationally isomorphic to Go(1V,1). Conversel. for a given unitary 2-
dimensional representation W of G there exists unitary 1-dimensional
representation V' of G such that G(11.1) is C' birationally isomorphic
to the 2 dimensional unit sphere S(17 4 R).

PROOF. Let V be a 1-dimensional unitary representation of G. Define
¢:S(VPHR)— Go(C? 1) by
‘ 1
o, o) = —Z~
for (u,a) € S(V & R). Here

Ge(CH 1) = {(‘; . f“> La €10,1], 4 € C 18] = a(l —a)}.

Then ¢ is clearly a polynomial map which has 1he inverse v : G¢(C?, 1)
- S(V & R) such that
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It remains to prove that there exists a unitary representation structure
W of G on C? such that if G~(C?,1) = G¢(W, 1) has the induced action
of G defined by ¢ - 4 = gd4¢g7! for ¢ € G and 4 € Gg(W,1), then
the map ¢ and ¢ are G-equivariant. Let U be any 2-dimensional unitary
representation of G. Since G 1s abelian U7 is a direct sum of 1-dimensional
irreducible representations. Then for ¢ € G and (2,y) € C? we may

assume that o (o) ,
i ¢ 7Y 0 a
(g-(x,y)) = ( 0 Ci&g(g)) (y)

for some 0 < 6y(g),62(¢9) < 2m. Therefore the induced action of G
on Gg(U, 1) is defined as follows: for ¢ € G and 4 = (; 1 -/fa') €
Ge(U, 1)

4= eifily) 0 Q B —iilg 0
g-a= 0 ¢t¥2t9) 3 1—a 0 e~1020y)
Qa (,1(91((1)—92(9)),.3

- 61(91(9)—92(!1))!,j 1-a

Since V is a 1-dimensional unitary representation of & there exists 0 <
w(g) < 2m such that gv = ¢'~9v for ¢ € G and v € V. If we choose a
2-dimensional unitary representation 11° of G such that 6,(g) — 62(g) =
w(g), where #,(g) and 63(¢) are the numbers as above, then with the
induced G action on G (11, 1) the maps ¢ and ¢ are (¢ equivariant. The
second statement of the lema can be proved similartyy. O

THEOREM 3.5. Let G be au abelian group. Let E be any unitary
representation of G, and V" a unitarv 1-dimensional representation of

G. Then R(S(E), S(V + R)Y is deuse in C(S(E), S(V & R)C with C?
topology for 0 < p <r < x and p < .

ProoF. The theorem follows from Theorem 3.3, and Lemuna 3.4.
O

References

[At] M. Atiyah, K-theory, Benjamin Inc.. 1967,



[BK1]
[BK3)

[DMP]

[DMS]
(Iv]
[Tr]

[Wol

Equivariant algebraic approximations of G maps 961

J. Bochnak and W. Kucharz, Algebraic approzimation of mappings into
spheres, Michigan Math. J. 43 (1979), 119-125

J. Bochnak and W. Kucharz, On real algebraic morphisms wnlo even-dimen
sional spheres, Annals of Math. 128 (1988), 415-433.

K. H. Dovermann, M. Masuda, and T. Petrie, Fized pownt free algebraic
actions on varieties diffeomorplic to 1", Topological methods in algebraic
transforiiation groups (H. Kraft, 1" Petrie, and G. Schwarz, eds.), Progress
in Mathematics, Vol. 30, Birkhiuser. Boston, Basel, Berlin, 1939, pp. 49-80.
K. H. Dovermann, M. Masuda, and D). Y. Sul, Algebraic realization of equi-
variant vector bundles, J. reiner angewandte Math. 448 (1994), 31-64.

N. V. Ivanov, Approzunation of sioeth manifolds by real algebraic sets, Rus-
sian Math. Surveys 37:1 (1982), }-59.

F. Treves, Topological vector spaces. distributions and kernels, Academic
Press, New York London, 1967,

R.Wood, Polynomial maps from spheres to spheres, Inventiones math. 5
(1968), 163-163.

Department of Mathematics

Korea Advanced Institute of Scicnce and Technology
Taejon, Korea 305-701

e-mail: dysuh@math kaist.ac.kr



