• Title/Summary/Keyword: AhR2

Search Result 590, Processing Time 0.08 seconds

Inhibitory Effect of Aged Petroleum Hydrocarbons on the Survival of Inoculated Microorganism in a Crude-Oil-Contaminated Site

  • Kang, Yoon-Suk;Park, Youn-Jong;Jung, Jae-Joon;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1672-1678
    • /
    • 2009
  • We studied the effects of aged total petroleum hydrocarbons (aged TPH) on the survival of allochthonous diesel-degrading Rhodococcus sp. strain YS-7 in both laboratory and field investigations. The aged TPH extracted from a crude-oil-contaminated site were fractionized by thin-layer chromatography/flame ionization detection (TLC/FID). The three fractions identified were saturated aliphatic (SA), aromatic hydrocarbon (AH), and asphaltene-resin (AR). The ratio and composition of the separated fractions in the aged TPH were quite different from the crude-oil fractions. In the aged TPH, the SA and AH fractions were reduced and the AR fraction was dramatically increased compared with crude oil. The SA and AH fractions (2 mg/l each) of the aged TPH inhibited the growth of strain YS-7. Unexpectedly, the AR fraction had no effect on the survival of strain YS-7. However, crude oil (1,000 mg/l) did not inhibit the growth of strain YS-7. When strain YS-7 was inoculated into an aged crude-oil-contaminated field and its presence was monitored by fluorescent in situ hybridization (FISH), we discovered that it had disappeared on 36 days after the inoculation. For the first time, this study has demonstrated that the SA and AH fractions in aged TPH are more toxic to an allochthonous diesel-degrading strain than the AR fraction.

A study of minimizing heavy metal content in metal complex dye development (중금속 최소화를 위한 메탈 함유 염료 개발에 관한 연구)

  • Kim, So-Jin;Park, Young-Hwan;Lee, Hea-Jung;Lim, Jae-Ho;Ryu, Tae-Soo
    • Journal of Fashion Business
    • /
    • v.13 no.5
    • /
    • pp.55-65
    • /
    • 2009
  • Metal complex dyes are usually used to dye amide fiber such as wool, silk and nylon to achieve high concentrated color and excellent color fastness. However, metal complex dyes that contain various heavy metal components cause not only serious environmental problem but also human health. In this study the ordinary 1:2 metal acid dyes and the modified 1:2 metal dyes, which are environmental friendly, are compared and analyzed in existing dyes investigated the trends in the evaluation system of their harmfulness, containing heavy metals and examined exhaustion rates and dyeing characteristics.

Effect of Electrolyte Amounts on Electrochemical Properties of Coin-Type Lithium-Ion Cells (액체전해액의 함량에 따른 리튬이온전지 코인셀의 전기화학적 특성 연구)

  • Yoon, Byeolhee;Han, Taeyeong;Kim, Seokwoo;Jin, Dahee;Lee, Yong min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.39-46
    • /
    • 2018
  • Many studies on the electrochemical performance of Li secondary batteries have been obtained using coin-type cells due to the ease of assembly, low cost and ensuring reproducibility. The coin-type cell consists of a case, a gasket, a spacer disk, and a wave spring. These structural features require a greater amount of liquid electrolyte to assemble than other types of cells such as laminated cells and cylindrical cells. Nevertheless, little research has been conducted on the effect of excess liquid electrolytes on the electrochemical performances of Li secondary batteries. In this study, we investigate the effect of different amounts of electrolyte on the coin-type cells. The amount of electrolytes is adjusted to 30 and $100mg\;mAh^{-1}$. Cycle performances at room temperature ($25^{\circ}C$) and high temperature ($60^{\circ}C$) and high voltage are performed to investigate the electrochemical properties of the different amount of electrolytes. In the case of the unit cell including the electrolyte of $30mg\;mAh^{-1}$, the discharging capacity retention characteristic is excellent in comparison with the case of $100mg\;mAh^{-1}$ under the high temperature and high voltage condition. The former shows a larger increase in internal resistance than the latter, confirming that the amount of electrolyte significantly influences the discharge capacity retention characteristics of the battery.

Rancidity Estimation of Perilla Seed Oil using NIR Spectroscopy and Multi-variate Analysis Techniques (근적외선 분광기법과 인공신경망을 이용한 식용유지의 산패 분석)

  • Lee, Ah-Yeong;Hong, Suk-Ju;Rho, Shin-Jung;Park, Heesoo;Kim, Yong-Ro;Kim, Ghiseok
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.98-98
    • /
    • 2017
  • 대부분의 가정과 요식업체, 식품가공업계에서 이용하고 있는 식용유지는 저장 및 가공과정 중에 산패가 빈번하게 일어나게 된다. 기존에는 유지 산패를 측정하기 위해 산가, 과산화물가 등을 측정하는 이화학적인 적정방법을 이용하였는데 실험자의 숙련도에 따라 결과의 오차가 발생할 수 있고, 반복실험으로 인한 시간과 비용이 많이 소모되는 등 여러 제약사항을 포함하고 있어 식용유지의 산패를 실시간 비파괴적으로 분석할 수 있는 기술의 개발에 많은 관심이 모아지고 있다. 따라서, 본 연구에서는 식용유지의 저장조건에 따른 산패정도를 비파괴적으로 평가하기 위한 근적외선 분광분석과 인공신경망 분석기술을 개발하여 그 실효성을 평가하였다. 식물성 식용유지인 들기름을 특정 온도에서 일정한 시간동안 저장하면서 이화학적 적정방법을 통해 산가와 과산화물가를 측정하였으며 동일한 시료의 근적외선 투과스펙트럼을 획득하였다. 수집된 정보를 이용하여 유지 산패 예측 모델을 개발하기 위해 다변량 분석기법 (주성분 회귀분석, 최소자승 회귀분석과 인공신경망 분석)을 적용하였다. 분석 결과, 인공신경망 분석모델이 산가 ($R^2_{tra}:0.9037$, $R^2_{val}:0.8175$, $R^2_{test}:0.8555$)와 과산화물가 ($R^2_{tra}:0.9210$, $R^2_{val}:0.9341$, $R^2_{test}:0.8286$)의 예측 성능이 가장 우수한 것으로 확인되었다. 본 연구의 결과들은 농산물과 식품의 성분 측정뿐만 아니라 다른 산업분야에서도 유용하게 활용될 수 있을 것으로 기대되어진다.

  • PDF

Electrochemical Studies of Carbon Felt Electrode Modified Under Airless Conditions for Redox Flow Batteries

  • Noh, Tae Hyoung;Kim, Min Young;Kim, Da Hye;Yang, Seung Hoon;Lee, Jong Ho;Park, Hong Sik;Noh, Hee Sook;Lee, Moo Sung;Kim, Ho Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.155-161
    • /
    • 2017
  • Carbon felts were prepared under various thermal conditions to improve the electrochemical properties of vanadium redox flow batteries. The number of C-O and/or C-OH functional groups on the surface of the electrodes treated under airless conditions was much larger than that of the untreated and partially oxygen-treated electrodes. The carbon felt treated under airless conditions had the lowest surface area. The overall kinetic properties of the redox reaction were greatly improved for the carbon felt treated under airless conditions; i.e., the reversibility of the anodic and cathodic reactions associated with the $VO_2{^+}/VO^{2+}$ couple became more reversible. Single-cell tests indicated that the carbon felt exhibited an excellent discharge capacity of $3.1Ah{\cdot}g^{-1}$ at $40mA{\cdot}cm^{-2}$, and the corresponding Coulombic, voltage, and energy efficiencies were 89.5%, 91.8%, and 82.2%, respectively.

NgR1 Expressed in P19 Embryonal Carcinoma Cells Differentiated by Retinoic Acid Can Activate STAT3

  • Lee, Su In;Yun, Jieun;Baek, Ji-Young;Jeong, Yun-Ji;Kim, Jin-Ah;Kang, Jong Soon;Park, Sun Hong;Kim, Sang Kyum;Park, Song-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.105-109
    • /
    • 2015
  • NgR1, a Nogo receptor, is involved in inhibition of neurite outgrowth and axonal regeneration and regulation of synaptic plasticity. P19 embryonal carcinoma cells were induced to differentiate into neuron-like cells using all trans-retinoic acid and the presence and/or function of cellular molecules, such as NgR1, NMDA receptors and STAT3, were examined. Neuronally differentiated P19 cells expressed the mRNA and protein of NgR1, which could stimulate the phosphorylation of STAT3 when activated by Nogo-P4 peptide, an active segment of Nogo-66. During the whole period of differentiation, mRNAs of all of the NMDA receptor subtypes tested (NR1, NR2A-2D) were consistently expressed, which meant that neuronally differentiated P19 cells maintained some characteristics of neurons, especially central nervous system neurons. Our results suggests that neuronally differentiated P19 cells expressing NgR1 may be an efficient and convenient in vitro model for studying the molecular mechanism of cellular events that involve NgR1 and its binding partners, and for screening compounds that activate or inhibit NgR1.

The Electric Characteristics of Asymmetric Hybrid Supercapacitor Modules with Li4Ti5O11 Electrode (Li4Ti5O11 전극을 이용한 비대칭 하이브리드 슈퍼커패시터 전기적 모듈 특성)

  • Maeng, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.357-362
    • /
    • 2017
  • Among the lithium metal oxides for asymmetric hybrid supercapacitor, $Li_4Ti_5O_{12}(LTO)$ is an emerging electrode material as zero-stain material in volume change during the with the charging and discharging processes. The pulverized LTO powder was observed to show the enhanced capacity from 120 mAh/g to 156 mAh/g at C-rate (10, 100 C). Hybrid supercapacitor module(48V, 416F) was fabricated using an asymmetric hybrid capacitor with a capacitance of 7500F. As a result of the measurement of C-rate characteristics, the module shows that the discharge time is drastically reduced at more than 50C, and the ESR and voltage drop characteristics are increased. The energy density and power density were reduced under high C-rate conditions. When designing asymmetric hybrid supercapacitor module, the C-rate and ESR should be considered As a result of measuring the 5 kw UPS, it was discharged at the current of 116A~170A during the discharge in the voltage range of 48V~30V, and the compensation time at discharge was measured to be about 33.2s. Experimental results show that it can be applied to applications related to stabilization of power quality by applying hybrid supercapacitor module.

Molecular Divergences of 16S rRNA and rpoB Gene in Marine Isolates of the Order Oscillatoriales (Cyanobacteria) (남조세균 흔들말목(Cyanobacteria, Oscillatoriales) 해양 균주의 16S rRNA와 rpoB 유전자 변이)

  • Cheon, Ju-Yong;Lee, Min-Ah;Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.319-324
    • /
    • 2012
  • In this study, we investigated molecular divergences and phylogenetic characteristics of the 16S ribosomal RNA (rRNA) and RNA polymerase beta subunit (rpoB) gene sequences from the order Oscillatoriales (Cyanobacteria). The rpoB of Oscillatoriales showed higher genetic divergence when compared with those of 16S rRNA (p-distance: rpoB=0.270, 16S=0.109), and these differences were statistically significant (Student t-test, p<0.001). Phylogenetic trees of 16S rRNA and rpoB were generally compatible; however, rpoB tree clearly separated the compared Oscillatoriales taxa, with higher phylogenetic resolution. In addition, parsimony analyses showed that rpoB gene evolved 2.40-fold faster than 16S rRNA. These results suggest that the rpoB is a useful gene for the molecular phylogenetics and species discrimination in the order Oscillatoriales.

Synthesis and Electrochemical Properties of Nitrogen Doped Mesoporous TiO2 Nanoparticles as Anode Materials for Lithium-ion Batteries (질소도핑 메조다공성 산화티타늄 나노입자의 합성 및 리튬이온전지 음극재로의 적용)

  • Yun, Tae-Kwan;Bae, Jae-Young;Park, Sung-Soo;Won, Yong-Sun
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Mesoporous anatase $TiO_2$ nanoparticles have been synthesized by a hydrothermal method using a tri-block copolymer as a soft template. The resulting $TiO_2$ materials have a high specific surface area of $230\;m^2/g$, a predominant pore size of 6.8 nm and a pore volume of 0.404 mL/g. The electrochemical properties of mesoporous anatase $TiO_2$ for lithium ion battery (LIB) anode materials have been investigated by typical coin cell tests. The initial discharge capacity of these materials is 240 mAh/g, significantly higher than the theoretical capacity (175 mAh/g) of LTO ($Li_4Ti_5O_{12}$). Although the discharge capacity decreases with the C-rate increase, the mesoporous $TiO_2$ is very promising for LIB anode because the surface for the Li insertion is presented significantly with mesopores. Nitrogen doping has a certain effect to control the capacity decrease by improving the electron transport in $TiO_2$ framework.

Inhibitory Effects on Melanin Production of Demethylsuberosin Isolated from Angelica gigas Nakai (참당귀로부터 분리한 Demethylsuberosin의 멜라닌 생성 억제 효과)

  • Kim, You Ah;Park, Sung Ha;Kim, Bo Yun;Kim, A Hyun;Park, Byoung Jun;Kim, Jin Jun
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.209-213
    • /
    • 2014
  • The anti-melanogenic substance was isolated from the root of Angelica gigas Nakai by silica gel column chromatography, preparative HPLC and TLC. As a result of the structure analysis by mass, $^1H$-NMR, and $^{13}C$-NMR spectrometry, the compound was identified as demethylsuberosin. Demethylsuberosin reduced melanin contents of B16F1 melanoma cells in a dose-dependent manner and decreased to about 74% at a concentration $5{\mu}g/ml$. Demethylsuberosin inhibited the expression in microphthalmia associated transcription factor (MITF), tyrosinase, tyrosinase related protein-1 (TRP-1), and tyrosinase related protein-2 (TRP-2) in melanocytes. These results suggest that the whitening activity of demethylsuberosin may be due to the inhibition of the melanin synthesis by down-regulation of MITF, tyrosinase, TRP-1 and TRP-2 expression. Thus, our results provide evidence that demethylsuberosin might be useful as a potential skin-whitening agent.