DOI QR코드

DOI QR Code

Electrochemical Studies of Carbon Felt Electrode Modified Under Airless Conditions for Redox Flow Batteries

  • Noh, Tae Hyoung (Applied Optics and Energy R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Min Young (Applied Optics and Energy R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Da Hye (Applied Optics and Energy R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Yang, Seung Hoon (Applied Optics and Energy R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Jong Ho (Applied Optics and Energy R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Park, Hong Sik (Research Center, CNF Co., Ltd.) ;
  • Noh, Hee Sook (Center of Research and Development, Energy & HVAC Co., Ltd.) ;
  • Lee, Moo Sung (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Kim, Ho Sung (Applied Optics and Energy R&D Group, Korea Institute of Industrial Technology (KITECH))
  • Received : 2017.02.21
  • Accepted : 2017.04.05
  • Published : 2017.06.30

Abstract

Carbon felts were prepared under various thermal conditions to improve the electrochemical properties of vanadium redox flow batteries. The number of C-O and/or C-OH functional groups on the surface of the electrodes treated under airless conditions was much larger than that of the untreated and partially oxygen-treated electrodes. The carbon felt treated under airless conditions had the lowest surface area. The overall kinetic properties of the redox reaction were greatly improved for the carbon felt treated under airless conditions; i.e., the reversibility of the anodic and cathodic reactions associated with the $VO_2{^+}/VO^{2+}$ couple became more reversible. Single-cell tests indicated that the carbon felt exhibited an excellent discharge capacity of $3.1Ah{\cdot}g^{-1}$ at $40mA{\cdot}cm^{-2}$, and the corresponding Coulombic, voltage, and energy efficiencies were 89.5%, 91.8%, and 82.2%, respectively.

Keywords

References

  1. L. Joerissen, J. Garche, C.H. Fabjan, G. Tomazic, J. Power Sources., 2004, 127, 98-104. https://doi.org/10.1016/j.jpowsour.2003.09.066
  2. K.-L. Huang, X.-G. Li, S.-Q. Liu, N. Tan, L.-Q. Chen, Renewable Energy., 2008, 33, 186-192. https://doi.org/10.1016/j.renene.2007.05.025
  3. M. Skyllas-Kazacos, M. H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleemd, J. Electrochem. Soc., 2011, 158 (8), R55-R79. https://doi.org/10.1149/1.3599565
  4. M. Rychcik, M. Skyllas-Kazacos, J. Power Sources., 1988, 22, 59-67. https://doi.org/10.1016/0378-7753(88)80005-3
  5. M. Kazacos, M. Skyllas-Kazacos, J. Electrochem. Soc., 1989, 136, 2759-2760. https://doi.org/10.1149/1.2097588
  6. L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Carbon., 2010, 48, 3079-3090. https://doi.org/10.1016/j.carbon.2010.04.044
  7. E. Agar, C. Dennison, K. Knehr, E. Kumbur, J. Power Sources., 2013, 225, 89-94. https://doi.org/10.1016/j.jpowsour.2012.10.016
  8. B. Sun, M. Skyllas-Kazacos, Electrochim. Acta., 1992, 37, 1253-1260. https://doi.org/10.1016/0013-4686(92)85064-R
  9. C. Flox, M. Skoumal, J. Rubio-Garcia, T. Andreu, J.R. Morante, Appl. Energy., 2013, 109, 344-351. https://doi.org/10.1016/j.apenergy.2013.02.001
  10. Z. Gonzalez, A. Sanchez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Electrochem. Commun., 2011, 13, 1379-1382. https://doi.org/10.1016/j.elecom.2011.08.017
  11. B. Sun, M. Skyllas-Kazacos, Electrochim. Acta., 1992, 37, 2459-2465. https://doi.org/10.1016/0013-4686(92)87084-D
  12. Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochim. Acta., 2014, 132, 37-41. https://doi.org/10.1016/j.electacta.2014.03.107
  13. A.M. Pezeshki, J.T. Clement, G.M. Veith, T.A. Zawodzinski, M.M. Mench, J. Power Sources., 2015, 294, 333-338. https://doi.org/10.1016/j.jpowsour.2015.05.118
  14. L. Zhang, Z.-G. Shao, X. Wang, H. Yu, S. Liu, B. Yi, J. Power Sources., 2013, 242, 15-22. https://doi.org/10.1016/j.jpowsour.2013.05.049
  15. X.-G. Li, K.-L. Huang, S.-Q. Ltu, L.Q. Chen, J. Cent. South Univ. Technol., 2007, 14(1), 1-6. https://doi.org/10.1007/s11771-007-0001-8
  16. S. Zhong, C. Padeste, M. Kazacos, M. Skyllas-Kazacos, J. Power Sources., 1993, 45, 29-41. https://doi.org/10.1016/0378-7753(93)80006-B
  17. F. Vautard, S. Ozcan, H. Meyer, Composites: Part A., 2012, 43, 1120-1133. https://doi.org/10.1016/j.compositesa.2012.02.018
  18. Y. Xie, P.M.A. Sherwood, Chem. Mater., 1990, 2, 293-299. https://doi.org/10.1021/cm00009a020
  19. K.J. Kim, Y.-J. Kim, J.-H. Kim, M.-S. Park, Mater. Chem. Phys., 2011, 131, 547-553. https://doi.org/10.1016/j.matchemphys.2011.10.022
  20. Y. Shao, M. Engelhard, Y. Lin, Electrochem. Commun., 2009, 11, 2064-2067. https://doi.org/10.1016/j.elecom.2009.08.053