DOI QR코드

DOI QR Code

Effect of Electrolyte Amounts on Electrochemical Properties of Coin-Type Lithium-Ion Cells

액체전해액의 함량에 따른 리튬이온전지 코인셀의 전기화학적 특성 연구

  • Yoon, Byeolhee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Han, Taeyeong (NED R&D Center, Orion display) ;
  • Kim, Seokwoo (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jin, Dahee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Yong min (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University)
  • 윤별희 (한밭대학교 화학생명공학과) ;
  • 한태영 (오리온디스플레이 NED 연구소) ;
  • 김석우 (한밭대학교 화학생명공학과) ;
  • 진다희 (한밭대학교 화학생명공학과) ;
  • 이용민 (대구경북과학기술원 에너지시스템공학전공) ;
  • 유명현 (한밭대학교 화학생명공학과)
  • Received : 2018.03.20
  • Accepted : 2018.05.11
  • Published : 2018.05.31

Abstract

Many studies on the electrochemical performance of Li secondary batteries have been obtained using coin-type cells due to the ease of assembly, low cost and ensuring reproducibility. The coin-type cell consists of a case, a gasket, a spacer disk, and a wave spring. These structural features require a greater amount of liquid electrolyte to assemble than other types of cells such as laminated cells and cylindrical cells. Nevertheless, little research has been conducted on the effect of excess liquid electrolytes on the electrochemical performances of Li secondary batteries. In this study, we investigate the effect of different amounts of electrolyte on the coin-type cells. The amount of electrolytes is adjusted to 30 and $100mg\;mAh^{-1}$. Cycle performances at room temperature ($25^{\circ}C$) and high temperature ($60^{\circ}C$) and high voltage are performed to investigate the electrochemical properties of the different amount of electrolytes. In the case of the unit cell including the electrolyte of $30mg\;mAh^{-1}$, the discharging capacity retention characteristic is excellent in comparison with the case of $100mg\;mAh^{-1}$ under the high temperature and high voltage condition. The former shows a larger increase in internal resistance than the latter, confirming that the amount of electrolyte significantly influences the discharge capacity retention characteristics of the battery.

많은 실험실 기반의 리튬이차전지 실험결과는 코인셀로부터 얻어진다. 이는 조립의 용이성, 저렴한 가격, 실험 결과의 우수한 재연성 등에 기인한다. 코인셀은 케이스(case), 가스켓(gasket), 스페이서(spacer disk), 스프링(wave spring)로 구성되어 있으며, 이러한 구조적인 특성으로 인하여 코인셀은 상용화된 파우치, 각형 및 원통형 전지에 비하여 전극 무게 대비 많은 양의 전해질을 포함하게 된다. 하지만 과량의 전해액이 셀의 성능에 미치는 영향에 대한 연구는 현재까지 이루어지지 않은 상황이다. 본 연구에서는 액체 전해액의 양을 다르게 제어하여 코인셀에 미치는 영향을 알아보고자 하였다. 전해액의 양은 전극 용량 대비 30, $100mg\;mAh^{-1}$(전해액의 양/전극용량)로 제어하였으며, 조립된 셀의 전해액 함량에 따른 전기화학적 특성을 확인하기 위해 초기 충 방전 곡선과 상온 ($25^{\circ}C$), 고온 ($60^{\circ}C$) 및 고전압(4.5 V)에서의 수명특성평가를 진행하였다. $30mg\;mAh^{-1}$의 전해액을 포함하는 단위 전지의 경우, 고온 및 고전압 조건에서 $100mg\;mAh^{-1}$의 경우에 비해 매우 우수한 방전 용량 유지 특성을 나타내었다. 전자는 후자보다 더 큰 내부저항 증가를 보였으며, 이를 통해 전해액의 양이 전지의 방전 용량 유지 특성에 매우 큰 영향을 미치고 있음을 확인하였다.

Keywords

References

  1. Scrosati, B., Hassoun, J., Sun, Y.-K., 'Lithium-Ion Batteries. A Look into the Future', Energy Environ. Sci. 4, 3287-3295 (2011). https://doi.org/10.1039/c1ee01388b
  2. Armand, M., Tarascon, J.-M., 'Building Better Batteries', Nature 451, 652 (2008). https://doi.org/10.1038/451652a
  3. Liu, C., Li, F., Ma, L. P., Cheng, H. M., 'Advanced Materials for Energy Storage', Adv. Mater. 22, E28-E62 (2010). https://doi.org/10.1002/adma.200903328
  4. Ryou, M. H., Lee, Y. M., Park, J. K., Choi, J. W., 'Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries', Adv. Mater. 23, 3066-3070 (2011). https://doi.org/10.1002/adma.201100303
  5. Ryou, M.-H., Lee, J.-N., Lee, D. J., Kim, W.-K., Jeong, Y. K., Choi, J. W., Park, J.-K., Lee, Y. M., 'Effects of Lithium Salts on Thermal Stabilities of Lithium Alkyl Carbonates in Sei Layer', Electrochim. Acta 83, 259-263 (2012). https://doi.org/10.1016/j.electacta.2012.08.012
  6. Lu, D., Tao, J., Yan, P., Henderson, W. A., Li, Q., Shao, Y., Helm, M. L., Borodin, O., Graff, G. L., Polzin, B., 'Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes', Nano Lett. 17, 1602-1609 (2017). https://doi.org/10.1021/acs.nanolett.6b04766
  7. Besenhard, J., Yang, J., Winter, M., 'Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries?', J. Power Sources 68, 87-90 (1997). https://doi.org/10.1016/S0378-7753(96)02547-5
  8. Megahed, S., Ebner, W., 'Lithium-Ion Battery for Electronic Applications', J. Power Sources 54, 155-162 (1995). https://doi.org/10.1016/0378-7753(94)02059-C
  9. Xu, K., 'Nonaqueous Liquid Electrolytes for Lithium- Based Rechargeable Batteries', Chem. Rev. 104, 4303-4418 (2004). https://doi.org/10.1021/cr030203g
  10. Endo, M., Kim, C., Nishimura, K., Fujino, T., Miyashita, K., 'Recent Development of Carbon Materials for Li Ion Batteries', Carbon 38, 183-197 (2000). https://doi.org/10.1016/S0008-6223(99)00141-4
  11. Park, G., Nakamura, H., Lee, Y., Yoshio, M., 'The Important Role of Additives for Improved Lithium Ion Battery Safety', J. Power Sources 189, 602-606 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.088
  12. Ota, H., Shima, K., Ue, M., Yamaki, J.-i., 'Effect of Vinylene Carbonate as Additive to Electrolyte for Lithium Metal Anode', Electrochim. Acta 49, 565-572 (2004). https://doi.org/10.1016/j.electacta.2003.09.010
  13. Izatt, R. M., Bradshaw, J. S., Nielsen, S. A., Lamb, J. D., Christensen, J. J., Sen, D., 'Thermodynamic and Kinetic Data for Cation-Macrocycle Interaction', Chem. Rev. 85, 271-339 (1985). https://doi.org/10.1021/cr00068a003
  14. Burns, J., Krause, L., Le, D.-B., Jensen, L., Smith, A., Xiong, D., Dahn, J., 'Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms', J. Electrochem. Soc. 158, A1417-A1422 (2011). https://doi.org/10.1149/2.084112jes
  15. Lin, F., Nordlund, D., Weng, T.-C., Zhu, Y., Ban, C., Richards, R. M., Xin, H. L., 'Phase Evolution for Conversion Reaction Electrodes in Lithium-Ion Batteries', Nat. Commun. 5, 3358 (2014). https://doi.org/10.1038/ncomms4358
  16. Amatucci, G., Tarascon, J., Klein, L., 'Cobalt Dissolution in Licoo2-Based Non-Aqueous Rechargeable Batteries', Solid State Ionics 83, 167-173 (1996). https://doi.org/10.1016/0167-2738(95)00231-6
  17. Eriksson, T., Andersson, A., Gejke, C., Gustafsson, T., Thomas, J. O., 'Influence of Temperature on the Interface Chemistry of Li X Mn2o4 Electrodes', Langmuir 18, 3609-3619 (2002). https://doi.org/10.1021/la011354m
  18. Yoon, T., Park, S., Mun, J., Ryu, J. H., Choi, W., Kang, Y.-S., Park, J.-H., Oh, S. M., 'Failure Mechanisms of Lini0. 5mn1. 5o4 Electrode at Elevated Temperature', J. Power Sources 215, 312-316 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.103
  19. Komaba, S., Kumagai, N., Kataoka, Y., 'Influence of Manganese (Ii), Cobalt (Ii), and Nickel (Ii) Additives in Electrolyte on Performance of Graphite Anode for Lithium-Ion Batteries', Electrochim. Acta 47, 1229-1239 (2002). https://doi.org/10.1016/S0013-4686(01)00847-7
  20. Kalluri, S., Yoon, M., Jo, M., Liu, H. K., Dou, S. X., Cho, J., Guo, Z., 'Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-Ion and Beyond- Lithium-Ion Batteries', Adv. Mater. 29, 1605807 (2017). https://doi.org/10.1002/adma.201605807
  21. Son, B., Ryou, M.-H., Choi, J., Kim, S.-H., Ko, J. M., Lee, Y. M., 'Effect of Cathode/Anode Area Ratio on Electrochemical Performance of Lithium-Ion Batteries', J. Power Sources 243, 641-647 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.062