• 제목/요약/키워드: Adjoint System

검색결과 79건 처리시간 0.038초

능동소음제어를 위한 Adjoint-LMS 알고리즘의 강인성 개선 (A Robustness Improvement of Adjoint-LMS Algorithms for Active Noise Control)

  • 문학룡;손진근
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.171-177
    • /
    • 2016
  • Noise problem that occurs in living environment is a big trouble in the economic, social and environmental aspects. In this paper, the filtered-X LMS algorithms, the adjoint LMS algorithms, and the robust adjoint LMS algorithms will be introduced for applications in active noise control(ANC). The filtered-X LMS algorithms is currently the most popular method for adapting a filter when the filter exits a transfer function in the error path. The adjoint LMS algorithms, that prefilter the error signals instead of divided reference signals in frequency band, is also used for adaptive filter algorithms to reduce the computational burden of multi-channel ANC systems such as the 3D space. To improve performance of the adjoint LMS ANC system, an off-line measured transfer function is connected parallel to the LMS filter. This parallel-fixed filter acts as a noise controller only when the LMS filter is abnormal condition. The superior performance of the proposed system was compared through simulation with the adjoint LMS ANC system when the adaptive filter is in normal and abnormal condition.

보조변수법을 이용한 감쇠계 고유치 설계민감도 해석 (Adjoint Design Sensitivity Analysis of Damped Systems)

  • 유정훈;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.398-401
    • /
    • 2001
  • There are two methods to calculate design sensitivity such as direct differentiation method and adjoint method. A sort of direct differentiation method for design sensitivity analysis costs too much when number of design variables is much larger than the number of response functions whose design sensitivity analyses are required. Therefore, an adjoint method is suggested for the case that the dimension of design variables is lager than the number of response function. An adjoint method is required to compute adjoint variables from the simultaneous linear system equation, the so-called adjoint equation, requiring only the eigenvalue and its associated eigenvectors for mode being differentiated. This method has been extended to the repeated eigenvalue problem. In this paper, we propose an adjoint method for deign sensitivity analysis of damped vibratory systems with distinct eigenvalues.

  • PDF

ADJOINT SYSTEM FOR A MAGNETO-CONVECTIVE FLOW IN AN ACTIVE MUSHY LAYER

  • Bhatta, Dambaru;Riahi, Daniel N.
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1269-1283
    • /
    • 2011
  • Here we consider magneto-convection in a mushy layer which is formed during solidification of binary alloys. The mushy layer is treated as an active porous media with variable permeability. The equations governing the layer are conservation of mass, conservation of heat, conservation of solute, magnetic induction equation, momentum equation governed by the Darcy's law and Maxwell's equations for the magnetic field. To study the second order effects on the flow without solving the second order system, we need to obtain the adjoint system for the flow. This motivates the authors we derive the adjoint system analytically for the mushy layer case. Numerical results of the adjoint system are presented for passive and active mushy layers at the onset of the motion using a set of parameters experimentalists use.

2007년 5월 6-8일 황사 현상의 예측 민감도 분석 (Forecast Sensitivity Analysis of An Asian Dust Event occurred on 6-8 May 2007 in Korea)

  • 김현미;계준경
    • 대기
    • /
    • 제20권4호
    • /
    • pp.399-414
    • /
    • 2010
  • Sand and dust storm in East Asia, so called Asian dust, is a seasonal meteorological phenomenon. Mostly in spring, dust particles blown into atmosphere in the arid area over northern China desert and Manchuria are transported to East Asia by prevailing flows. An Asian dust event occurred on 6-8 May 2007 is chosen to investigate how sensitive the Asian dust transport forecast to the initial condition uncertainties and to interpret the characteristics of sensitivity structures from the viewpoint of dynamics and predictability. To investigate the forecast sensitivities to the initial condition, adjoint sensitivities that calculate gradient of the forecast aspect (i.e., response function) with respect to the initial condition are used. The forecast aspects relevant to Asian dust transports are dry energy forecast error and lower tropospheric pressure forecast error. The results show that the sensitive regions for the dry energy forecast error and the lower tropospheric pressure forecast error are initially located in the vicinity of the trough and then propagate eastward as the surface low system moves eastward. The vertical structures of the adjoint sensitivities for the dry energy forecast error are upshear tilted structures, which are typical adjoint sensitivity structures for extratropical cyclones. Energy distribution of singular vectors also show very similar structures with the adjoint sensitivities for the dry energy forecast error. The adjoint sensitivities of the lower tropospheric pressure forecast error with respect to the relative vorticity show that the accurate forecast of the trough (or relative vorticity) location and intensity is essential to have better forecasts of the Asian dust event. Forecast error for the atmospheric circulation during the dust event is reduced 62.8% by extracting properly weighted adjoint sensitivity perturbations from the initial state. Linearity assumption holds generally well for this case. Dynamics of the Asian dust transport is closely associated with predictability of it, and the improvement in the overall forecast by the adjoint sensitivity perturbations implies that adjoint sensitivities would be beneficial in improving the forecast of Asian dust events.

ON THE ADJOINT LINEAR SYSTEM

  • Kwan, Shin-Dong
    • 대한수학회보
    • /
    • 제31권1호
    • /
    • pp.15-23
    • /
    • 1994
  • Throughout this paper, we are working on the complex number field C. The aim of this paper is to explain the applications of Theorem 2 in .cint. 1. In the surface theory, the adjoint linear system has played important roles and many tools have been developed to understand it. In the cases of higher dimensional varieties, we don't have any useful tools so far. Theorem 2 implies that it is enough to compute the dimension of the adjoint linear system to check the birationality. We can compute, somehow, the dimension of the adjoint linear system. For example, we can get an information about $h^{0}$ (X, $O_{x}$( $K_{x}$ + D)) from Euler characteristic of vertical bar $K_{X}$ + D vertical bar and some vanishing theorems. We are going to show the applications of Theorem 2 to smooth three-folds and smooth fourfold, specially, of general type with a nef canonical divisor, smooth Fano variety, and Calabi-Yau manifold. Our main results are Theorem A and Theorem B. Most of birationality problems in Theorem A and Theorem B have been studied. (see Ando [1] and Matsuki [4] for the detail matters.) But Theorem 2 gives short and easy proofs in the cases of dimension 3 and improves the previously known results in the cases of dimension 4.4. 4.4.

  • PDF

감쇠계 고유치문제의 설계민감도해석을 위한 보조변수법 (An Adjoint Variable Method for Eigenproblem Design Sensitivity Analysis of Damped Systems)

  • 이태희;이진민;유정훈;이민욱
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1527-1533
    • /
    • 2005
  • Three methods for design sensitivity analysis such as finite difference method(FDM), direct differentiation method(DDM) and adjoint variable method(AVM) are well known. FDM and DDM for design sensitivity analysis cost too much when the number of design variables is too large. An AVM is required to compute adjoint variables from the simultaneous linear system equation, the so-called adjoint equation. Because the adjoint equation is independent of the number of design variables, an AVM is efficient for when number of design variables is too large. In this study, AVM has been extended to the eigenproblem of damped systems whose eigenvlaues and eigenvectors are complex numbers. Moreover, this method is implemented into a commercial finite element analysis program by means of the semi-analytical method to show applicability of the developed method into practical structural problems. The proposed_method is compared with FDM and verified its accuracy for analytical and practical cases.

통합모델의 초기 자료에 대한 예측 민감도 산출 도구 개발 (Development of Tools for calculating Forecast Sensitivities to the Initial Condition in the Korea Meteorological Administration (KMA) Unified Model (UM))

  • 김성민;김현미;주상원;신현철;원덕진
    • 대기
    • /
    • 제21권2호
    • /
    • pp.163-172
    • /
    • 2011
  • Numerical forecasting depends on the initial condition error strongly because numerical model is a chaotic system. To calculate the sensitivity of some forecast aspects to the initial condition in the Korea Meteorological Administration (KMA) Unified Model (UM) which is originated from United Kingdom (UK) Meteorological Office (MO), an algorithm to calculate adjoint sensitivities is developed by modifying the adjoint perturbation forecast model in the KMA UM. Then the new algorithm is used to calculate adjoint sensitivity distributions for typhoon DIANMU (201004). Major initial adjoint sensitivities calculated for the 48 h forecast error are located horizontally in the rear right quadrant relative to the typhoon motion, which is related with the inflow regions of the environmental flow into the typhoon, similar to the sensitive structures in the previous studies. Because of the upward wave energy propagation, the major sensitivities at the initial time located in the low to mid- troposphere propagate upward to the upper troposphere where the maximum of the forecast error is located. The kinetic energy is dominant for both the initial adjoint sensitivity and forecast error of the typhoon DIANMU. The horizontal and vertical energy distributions of the adjoint sensitivity for the typhoon DIANMU are consistent with those for other typhoons using other models, indicating that the tools for calculating the adjoint sensitivity in the KMA UM is credible.

어드조인트 연산으로서의 역시간 구조보정 연산자 유도 (Derivation of Reverse-Time Migration Operator as Adjoint Operation)

  • 지준
    • 지구물리와물리탐사
    • /
    • 제10권2호
    • /
    • pp.111-123
    • /
    • 2007
  • 본 논문에서는 파동장 외삽(wavefield extrapolation)의 방향을 단순히 역시간(reverse time)으로 하여 적용하는 기존의 역시간 구조보정법(reverse time migration method)이 아닌, 묵시적으로 가정된 순방향 모델링(forward modeling) 연산자에 대한 정확한 어드조인트(adjoint) 연산자로서의 역시간 구조보정 연산자를 유도한다. 어드조인트 연산자를 얻는 방법으로는 우선 해당하는 순방향 연산자를 명시적인 행렬식의 형태로 정의하고 이에 대한 전치행렬식을 구한 후, 이러한 전치행렬식에 해당하는 연산자를 정의하는 접근법을 사용하였다. 정확한 어드조인트 관계에 있는 역시간 구조보정 연산자는 기존의 역시간 구조보정 연산자와 마찬가지로 구조보정의 목적으로 사용될 수 있을 뿐 아니라, 최소자승 구조보정(Least-squares migration)과 같은 역산을 통해서 지하구조 영상화를 할 때 필요로 하는 어드조인트 연산자를 정확하게 구현 할 수 있어 보다 정확한 역산 결과를 얻게 해준다.

Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method

  • Kim, Min-Geun;Kim, Jae-Hyun;Cho, Seon-Ho
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.683-691
    • /
    • 2010
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis(DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.25% of CPU time for the finite differencing. Also, the topology optimization yields physical meaningful results.