DOI QR코드

DOI QR Code

Development of Tools for calculating Forecast Sensitivities to the Initial Condition in the Korea Meteorological Administration (KMA) Unified Model (UM)

통합모델의 초기 자료에 대한 예측 민감도 산출 도구 개발

  • Kim, Sung-Min (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Hyun Mee (Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University) ;
  • Joo, Sang-Won (Korea Meteorological Administration) ;
  • Shin, Hyun-Cheol (Korea Meteorological Administration) ;
  • Won, DukJin (Korea Meteorological Administration)
  • 김성민 (연세대학교 대기과학과, 대기예측성 및 자료동화연구실) ;
  • 김현미 (연세대학교 대기과학과, 대기예측성 및 자료동화연구실) ;
  • 주상원 (기상청) ;
  • 신현철 (기상청) ;
  • 원덕진 (기상청)
  • Received : 2011.03.25
  • Accepted : 2011.06.19
  • Published : 2011.06.30

Abstract

Numerical forecasting depends on the initial condition error strongly because numerical model is a chaotic system. To calculate the sensitivity of some forecast aspects to the initial condition in the Korea Meteorological Administration (KMA) Unified Model (UM) which is originated from United Kingdom (UK) Meteorological Office (MO), an algorithm to calculate adjoint sensitivities is developed by modifying the adjoint perturbation forecast model in the KMA UM. Then the new algorithm is used to calculate adjoint sensitivity distributions for typhoon DIANMU (201004). Major initial adjoint sensitivities calculated for the 48 h forecast error are located horizontally in the rear right quadrant relative to the typhoon motion, which is related with the inflow regions of the environmental flow into the typhoon, similar to the sensitive structures in the previous studies. Because of the upward wave energy propagation, the major sensitivities at the initial time located in the low to mid- troposphere propagate upward to the upper troposphere where the maximum of the forecast error is located. The kinetic energy is dominant for both the initial adjoint sensitivity and forecast error of the typhoon DIANMU. The horizontal and vertical energy distributions of the adjoint sensitivity for the typhoon DIANMU are consistent with those for other typhoons using other models, indicating that the tools for calculating the adjoint sensitivity in the KMA UM is credible.

Keywords

References

  1. 김현미, 정병주, 계준경, 박종임, 김성민, 서유미, 2007: 목표 관측 수행을 위한 기반 시스템 연구, 62pp.
  2. 김현미, 계준경, 2010: 2007년 5월 6-8일 황사 현상의 예측 민감도 분석, 대기, 20(4), 399-414.
  3. Ancell, B. C., and C. F. Mass, 2008: The variability of adjoint sensitivity with respect to model physics and basic-state trajectory. Mon. Wea. Rev., 136, 4612-4628. https://doi.org/10.1175/2008MWR2517.1
  4. Buizza, R., 1994: Localization of optimal perturbations using a projection operator. Quart. J. Roy. Meteor. Soc., 120, 1647-1681. https://doi.org/10.1002/qj.49712052010
  5. Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239-250. https://doi.org/10.1002/qj.366
  6. Chen, J. -H., M. S. Peng, C. A. Reynolds, and C. -C. Wu, 2009: Interpretation of tropical cyclone forecast sensitivity from the singular vector perspective. J. Atmos. Sci., 66, 195-209.
  7. Clayton, A. M., 2004: VAR Scientific Documentation 60, UK Met. Office. 1-12.
  8. Courtier, P., J.-N. Thepaut, and A. Hollingsworth,: A strategy operational implementation of 4-D VAR using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367-1387. https://doi.org/10.1002/qj.49712051912
  9. Edwards, J. M, and Slingo, A, 1996: Studies with a flexible new radiation code. 1: Choosing a configuration for a largescale model. Quart. J. Roy. Meteor. Soc., 122, 689-719. https://doi.org/10.1002/qj.49712253107
  10. Essery R., M. Best, and P. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre technical note 30.
  11. Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 2577-2591. https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
  12. Gelaro, R., and Y. Zhu., 2009: Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus, Ser. A, 61, 179-193. https://doi.org/10.1111/j.1600-0870.2008.00388.x
  13. Gregory, D., R., Kershaw, and P. M. Inness, 1997: Parametrization of Momentum Transport by Convection 2: Test in single-Column and General Circulation Models. Quart. J. Roy. Meteor. Soc., 123, 1153-1184. https://doi.org/10.1002/qj.49712354103
  14. Jung, B.-J., and H. M. Kim, 2009: Moist-adjoint based forecast sensitivities for a heavy snowfall event over the Korean peninsula on 4-5 March 2004, J. Geophys. Res., 114, D15104, doi:10.1029/2008JD011370.
  15. Kershaw, R., and D. Gregory, 1997: Parametrization of Momentum Transport by Convection 1: Theory and Cloud Modeling Results. Quart. J. Roy. Meteor. Soc., 123, 1133-1151. https://doi.org/10.1002/qj.49712354102
  16. Kim, H. M., and B.-J. Jung, 2006: Adjoint-based forecast sensitivities of Typhoon Rusa. Geophys. Res. Lett., 33, L21813, doi:10.1029/2006GL027289.
  17. Kim, H. M., and B.-J. Jung, 2009a: Singular vector structure and evolution of a recurving tropical cyclone. Mon. Wea. Rev., 137, 505-524. https://doi.org/10.1175/2008MWR2643.1
  18. Kim, H. M., and B.-J. Jung, 2009b: Influence of moist physics and norms on singular vectors for a tropical cyclone. Mon. Wea. Rev., 137, 525-543. https://doi.org/10.1175/2008MWR2739.1
  19. Kim, H. M., J. K. Kay, and B.-J. Jung, 2008: Application of adjoint-based forecast sensitivities to Asian dust transport events in Korea. Water, Air, and Soil Pollution, 195, 335-343, doi:10.1007/s11270-008-9750-8.
  20. Kim, H. M., and R. J. Beare, 2011: Characteristics of adjoint sensitivity to potential vorticity. Meteorology and Atmospheric Physics, 111, 91-102, DOI: 10.1007/s00703-010-0119-3.
  21. Kim, H. M., S.-M. Kim, and B.-J. Jung, 2011: Real-time adaptive observation guidance using singular vectors for T-PARC 2008, Weather and Forecasting, doi: 10.1175/WAF-D-10-05013.1. In press.
  22. Kleist, D. T. and M. Morgan, 2005: Interpretation of the structure and evolution of adjoint-derived forecast sensitivity gradients. Mon. Wea. Rev., 133, 466-484. https://doi.org/10.1175/MWR-2865.1
  23. Klinker, E., F. Rabier, and R. Gelaro, 1998: Estimation of key analysis errors using the adjoint technique. Quart. J. Roy. Meteor. Soc., 124, 1909-1933. https://doi.org/10.1002/qj.49712455007
  24. Laroche, S., M. Tanguay, A. Zadra, and J. Morneau, 2002: Use of adjoint sensitivity analysis to diagnose the CMC global analysis performance: a case study. Atmos.-Ocean, 40, 423-443. https://doi.org/10.3137/ao.400404
  25. Langland and Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system, Tellus, Ser. A, 56, 189-201. https://doi.org/10.1111/j.1600-0870.2004.00056.x
  26. Liu and Kalnay, 2008: Estimating observation impact without adjoint model in an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 134, 1327-1335. https://doi.org/10.1002/qj.280
  27. Lock, A. R., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary-layer mixing scheme. Part 1: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
  28. Morgan, M., 2001: A potential vorticity and wave activity diagnosis of optimal perturbation evolution. J. Atmos. Sci., 59, 169-185.
  29. Peng. M. S., and C. A. Reynolds, 2005: Double trouble for typhoon forecasters. Geophys. Res. Lett., 32, L02810, doi:10.1029/2004GL021680.
  30. Peng. M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 2508-2528. https://doi.org/10.1175/JAS3777.1
  31. Rabier, F., 2005: Overview of global data assimilation development in numerical weather-prediction centres. Quart. J. Roy. Meteor. Soc., 131, 3215-3233. https://doi.org/10.1256/qj.05.129
  32. Reynolds, C. A., M. S. Peng, and J. -H. Chen 2009: Recurving tropical cyclones: Singular vector sensitivity and downstream impact. Mon. Wea. Rev., 137, 1320-1337. https://doi.org/10.1175/2008MWR2652.1
  33. Webster, S., A. Brown, A. R., Cameron, D. R., and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 1989-2010. https://doi.org/10.1256/qj.02.133
  34. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office unified model. Quart. J. Roy. Meteor. Soc., 125, 1607-1636. https://doi.org/10.1002/qj.49712555707
  35. Wu, C. C., S. -G. Chen, J. -H. Chen, K. -H. Chou, and P. -H. Lin, 2009: Interaction of Typhoon Shanshan (2006) with the midlatitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives. Mon. Wea. Rev., 137, 852-862.
  36. Zou, X., F. Vandenberghe, M. Pondeca, and Y.-H. Kuo, 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note NCAR/TN- 435STR, 110 pp.