• Title/Summary/Keyword: Adjoint

Search Result 358, Processing Time 0.023 seconds

SAMPLING THEOREMS ASSOCIATED WITH DIFFERENTIAL OPERATORS WITH FINITE RANK PERTURBATIONS

  • Annaby, Mahmoud H.;El-Haddad, Omar H.;Hassan, Hassan A.
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.969-990
    • /
    • 2016
  • We derive a sampling theorem associated with first order self-adjoint eigenvalue problem with a finite rank perturbation. The class of the sampled integral transforms is of finite Fourier type where the kernel has an additional perturbation.

A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS

  • Nie, Cunyun;Tan, Min
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.765-778
    • /
    • 2012
  • We construct a symmetric finite volume element (SFVE) scheme for a self-adjoint elliptic problem on tetrahedron grids and prove that our new scheme has optimal convergent order for the solution and has superconvergent order for the flux when grids are quasi-uniform and regular. The symmetry of our scheme is helpful to solve efficiently the corresponding discrete system. Numerical experiments are carried out to confirm the theoretical results.

OPTIMAL PARAMETERS FOR A DAMPED SINE-GORDON EQUATION

  • Ha, Jun-Hong;Gutman, Semion
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1105-1117
    • /
    • 2009
  • In this paper a parameter identification problem for a damped sine-Gordon equation is studied from the theoretical and numerical perspectives. A spectral method is developed for the solution of the state and the adjoint equations. The Powell's minimization method is used for the numerical parameter identification. The necessary conditions for the optimization problem are shown to yield the bang-bang control law. Numerical results are discussed and the applicability of the necessary conditions is examined.

고리원자력 4호기 감시시편 X에 대한 선량분석

  • 문복자;김형헌;김용일
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.125-130
    • /
    • 1996
  • 최근 고리원자력 4호기 압력용기에 대한 제 3차 감시시험$^{(1)}$ 이 수행되었고 그 과정 중 측정된 시편에서의 반응률을 근거로 선량분석을 수행하였다. ENDF/B-VI를 근거로 만들어진BUGLE93$^{(2)}$ 라이브러리를 사용하여 각분할코드인 DORT version 2.7.3$^{(3)}$ 를 이용한 forward 및 adjoint 수송 계산 결과와 측정된 반응률을 결합하여 고리 4호기 원자로의 감시시편 X를 대상으로 1 MeV이상의 중성자속, 0.1 MeV 이상의 중성자속 및 dpa(displacement per atom)를 계산하여 측정치와 계산치를 비교하였다.

  • PDF

THE HOMOTOPY CATEGORIES OF N-COMPLEXES OF INJECTIVES AND PROJECTIVES

  • Xie, Zongyang;Yang, Xiaoyan
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.623-644
    • /
    • 2019
  • We investigate the homotopy category ${\mathcal{K}}_N(Inj{\mathfrak{A}})$ of N-complexes of injectives in a Grothendieck abelian category ${\mathfrak{A}}$ not necessarily locally noetherian, and prove that the inclusion ${\mathcal{K}}_N(Inj{\mathfrak{A}}){\rightarrow}{\mathcal{K}}({\mathfrak{A}})$ has a left adjoint and ${\mathcal{K}}_N(Inj{\mathfrak{A}})$ is well generated. We also show that the homotopy category ${\mathcal{K}}_N(PrjR)$ of N-complexes of projectives is compactly generated whenever R is right coherent.

COHOMOLOGY AND DEFORMATIONS OF HOM-LIE-YAMAGUTI COLOR ALGEBRAS

  • Issa, A. Nourou
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.271-291
    • /
    • 2021
  • Hom-Lie-Yamaguti color algebras are defined and their representation and cohomology theory is considered. The (2, 3)-cocycles of a given Hom-Lie-Yamaguti color algebra T are shown to be very useful in a study of its deformations. In particular, it is shown that any (2, 3)-cocycle of T gives rise to a Hom-Lie-Yamaguti color structure on T⊕V , where V is a T-module, and that a one-parameter infinitesimal deformation of T is equivalent to that a (2, 3)-cocycle of T (with coefficients in the adjoint representation) defines a Hom-Lie-Yamaguti color algebra of deformation type.

REMARKS ON THE EXISTENCE OF AN INERTIAL MANIFOLD

  • Kwak, Minkyu;Sun, Xiuxiu
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1261-1277
    • /
    • 2021
  • An inertial manifold is often constructed as a graph of a function from low Fourier modes to high ones and one used to consider backward bounded (in time) solutions for that purpose. We here show that the proof of the uniqueness of such solutions is crucial in the existence theory of inertial manifolds. Avoiding contraction principle, we mainly apply the Arzela-Ascoli theorem and Laplace transform to prove their existence and uniqueness respectively. A non-self adjoint example is included, which is related to a differential system arising after Kwak transform for Navier-Stokes equations.

COMMUTATIVE ELLIPTIC OCTONIONS

  • Surekci, Arzu;Gungor, Mehmet Ali
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.195-208
    • /
    • 2022
  • In this article, the matrix representation of commutative elliptic octonions and their properties are described. Firstly, definitions and theorems are given for the commutative elliptic octonion matrices using the elliptic quaternion matrices. Then the adjoint matrix, eigenvalue and eigenvector of the commutative elliptic octonions are investigated. Finally, α = -1 for the Gershgorin Theorem is proved using eigenvalue and eigenvector of the commutative elliptic octonion matrix.

ITERATING A SYSTEM OF SET-VALUED VARIATIONAL INCLUSION PROBLEMS IN SEMI-INNER PRODUCT SPACES

  • Shafi, Sumeera
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.255-275
    • /
    • 2022
  • In this paper, we introduce a new system of set-valued variational inclusion problems in semi-inner product spaces. We use resolvent operator technique to propose an iterative algorithm for computing the approximate solution of the system of set-valued variational inclusion problems. The results presented in this paper generalize, improve and unify many previously known results in the literature.