DOI QR코드

DOI QR Code

EXTENDED SPECTRUM OF THE ALUTHGE TRANSFORMATION

  • Guemoula, Asma (Department of Mathematics, Operators Theory and PDE Foundations and Applications Laboratory, University of El-Oued) ;
  • Mansour, Abdelouahab (Department of Mathematics, Operators Theory and PDE Foundations and Applications Laboratory, University of El-Oued)
  • Received : 2021.05.01
  • Accepted : 2021.06.18
  • Published : 2021.09.30

Abstract

In this paper, a relationship between the extended spectrum of the Aluthge transform and the extended spectrum of the operator T is proved. Other relationships between two different operators and other results are also given.

Keywords

Acknowledgement

This work was supported by Laboratory of operator theory, Algeria.

References

  1. H. Alkanjo, On extended eigenvalues and extended eigenvectors of truncated shift, Concrete Operators 1 (2013), 19-27. https://doi.org/10.2478/conop-2012-0003
  2. A. Aluthge, On p-hyponormal Operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), 307-315. https://doi.org/10.1007/BF01199886
  3. A. Biswas, A. Lambert, and S. Petrovic, Extended eigenvalues and the Volterra operator, Glasg. Math. J. 44 (3) (2002), 521-534. https://doi.org/10.1017/S001708950203015X
  4. A. Biswas, S. Petrovic, On extended eigenvalues of operators, Integral Equations Operator Theory 55 (2) (2006), 233-248. https://doi.org/10.1007/s00020-005-1381-5
  5. G. Cassier, H. Alkanjo, Extended spectrum, extended eigenspaces and normal operators, J. Math. Anal. Appl 418 (1) (2014), 305-316. https://doi.org/10.1016/j.jmaa.2014.03.062
  6. K. Dykema, H. Schultz, Brown measure and iterates of the Aluthge transform for some operators arising from measurable actions, Trans. Amer. Math. Soc. 361 (2009), 6583-6593. https://doi.org/10.1090/S0002-9947-09-04762-X
  7. C. Foias, I. B. Jung, E. Ko and C. Pearcy, Complete Contractivity of Maps Associated with the Aluthge and Duggal Transform, s, Pacific J. Math. 209 (2003), 249-259. https://doi.org/10.2140/pjm.2003.209.249
  8. T. Furuta, Invitation to linear operators, Taylor and Fran. Loondon, (2001).
  9. T. Huruya, A note on p-hyponormaI operators, Proc. Amer. Math. Soc. 125 (1997), 3617-3624. https://doi.org/10.1090/S0002-9939-97-04004-5
  10. M. Ito, T. Yamazaki and M. Yanagida, On the polar decomposition of the Aluthge transformation and related results, J. Operator Theory 51 (2004), 303-319.
  11. I. Jung, E. Ko, and C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory 37 (2000),437-448. https://doi.org/10.1007/BF01192831
  12. K. Okuba, on weakly unitarily invariant norm and the Aluthge transformation, Linear Algebra Appl. 371 (2003), 369-375. https://doi.org/10.1016/S0024-3795(03)00485-3
  13. M. Sertbas, F. Yilmaz, On the extended spectrumof some quasinormal operators, Turk. J. Math. 41 (2017), 1477-1481. https://doi.org/10.3906/mat-1610-99
  14. T.Y. Tam, λ-Aluthge iteration and spectral radius, Integral Equations Operator Theory 60 (2008), 591-596. https://doi.org/10.1007/s00020-008-1573-x
  15. T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc. 130 (2002), 1131-1137. https://doi.org/10.1090/S0002-9939-01-06283-9
  16. T. Yamazaki, On numerical range of the Aluthge transformation, Linear Algebra Appl. 341 (2002), 111-117. https://doi.org/10.1016/S0024-3795(01)00333-0
  17. K. Zaiz, A. Mansour, On numerical range and numerical radius of convex function operations, Korean J. Math. 27 (2019), 879-898. https://doi.org/10.11568/kjm.2019.27.4.879