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COMMUTATIVE ELLIPTIC OCTONIONS

Arzu Sürekçi∗ and Mehmet Ali Güngör

Abstract. In this article, the matrix representation of commutative el-
liptic octonions and their properties are described. Firstly, definitions and

theorems are given for the commutative elliptic octonion matrices using
the elliptic quaternion matrices. Then the adjoint matrix, eigenvalue and

eigenvector of the commutative elliptic octonions are investigated. Fi-

nally, α = −1 for the Gershgorin Theorem is proved using eigenvalue and
eigenvector of the commutative elliptic octonion matrix.

1. Introduction

A four-dimensional hyper-complex number, the quaternion algebra was de-
scribed by W.R. Hamilton in 1853, [5]. Later in 1936, the real quaternion
matrices were introduced by L.A. Wolf, [12]. After the quaternion algebra was
used in many important fields such as modern mathematics, quantum physics,
painting and signal processing, and matrix analysis, [8, 9]. But it is well known
that the main obstacle in the study of the quaternion, the quaternion alge-
bra does not provide commutative property of multiplication. So F. Catoni, R.
Cannata, V. Catoni and P. Zampetti defined commutative quaternions in 2006,
[2]. Later, H.H. Kösal and M. Tosun studied the properties of the commuta-
tive quaternion matrices and the complex adjoint matrix for a commutative
quaternion matrix by using determinant calculus with adjoint matrix, [7].

If i2 = α ∈ R (α < 0) is taken instead of i2 = −1 in the commutative
quaternions, the set of the elliptic quaternion is defined by the following equa-
tion

Hp = {a = a0 + a1i+ a2j + a3k | ai ∈, 0 ≤ i ≤ 3}
where ij = ji = k, ik = ki = αj, jk = kj = i, i2 = k2 = α, j2 = 1,
[6]. After the properties of the matrix structure in the elliptic quaternion were
studied and the complex adjoint matrix of the elliptic quaternion was described,
[6, 3]. With these studies, the elliptic quaternion algebra has had an important
field of study in the literature.
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The octonion algebra O, a superset of the quaternion algebra, was obtained
by Cayley-Dickson construction, [1]. After matrix representations of octonions
was studied by Y. Tian, [11]. Then A. Cihan and M.A. Güngör given by
the commutative octonion matrices and some properties of these matrices, [4].
Finally, Y. Song defined the set SLn(R) that is the most general of commutative
octonion set, [10].

In this article, we examine commutative elliptic octonion matrices. First,
commutative elliptic octonions COp and some of their properties are given.
Then, some theorems and properties are shown for commutative elliptic octo-
nion matrices by using the properties of elliptic quaternion matrices. Later, the
elliptic quaternion adjoint matrix for the commutative elliptic octonion matrix
is defined and the eigenvalues and eigenvectors of commutative elliptic octonion
matrices are calculated with the help of the elliptic quaternion adjoint matrix.
With the help of these calculations, α = −1 for Gershgorin Theorem is proved.
Finally, an example that related to the Gershgorin Theorem is given.

2. Commutative Elliptic Octonions

In this article we will explore how to construct the commutative elliptic
octonion algebra. Since a commutative elliptic octonion can be written as a
hyperbolic number that is elliptic quaternion their coefficients, a commutative
elliptic octonion a is expressed by the following equation

a = a′ + a′′e

where e2 = 1 and a′, a′′ ∈ Hp. Let

a′ = a0 + a1i+ a2j + a3k ∈ Hp

a′′ = a4 + a5i+ a6j + a7k ∈ Hp

then a commutative elliptic octonion is written

a = (a0 + a1i+ a2j + a3k) + (a4 + a5i+ a6j + a7k) e.

As a result of these, a set of the commutative elliptic octonion is denoted by

COp = {a = a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6

+a7e7 | ai ∈ R, 0 ≤ i ≤ 7} ,

and the bases of the commutative elliptic octonions are defined by the following
equations

e0 = 1, e1 = i, e2 = j, e3 = k, e4 = e, e5 = ie = ei, e6 = je = ej, e7 = ke = ek,
e20 = 1, e21 = α, e22 = 1, e23 = α, e24 = 1, e25 = α, e26 = 1, e27 = α.

If these equations are taken into account, the multiplication rule of the com-
mutative elliptic octonion bases are given by the following table:
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Table 1. The multiplication scheme of the commutative elliptic octonion units.
× e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 αe0 e3 αe2 e5 αe4 e7 αe6
e2 e2 e3 e0 e1 e6 e7 e4 e5
e3 e3 αe2 e1 αe0 e7 αe6 e5 αe4
e4 e4 e5 e6 e7 e0 e1 e2 e3
e5 e5 αe4 e7 αe6 e1 αe0 e3 αe2
e6 e6 e7 e4 e5 e2 e3 e0 e1
e7 e7 αe6 e5 αe4 e3 αe2 e1 αe0

Addition and multiplication of any commutative elliptic octonion a = a′ + a′′e,
b = b′ + b′′e ∈ COp are defined by

(1) a+ b =
(
a′ + a′′e

)
+
(
b′ + b′′e

)
=
(
a′ + b′

)
+
(
a′′ + b′′

)
e

and

(2) a× b =
(
a′ + a′′e

)
×
(
b′ + b′′e

)
=
(
a′b′ + a′′b′′

)
+
(
a′b′′ + b′a′′

)
e

respectively. Let a = a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7 ∈ COp,
then the commutative elliptic octonion a expressed as

a = Rea+ Ima

where Rea = a0e0 and Ima = a1e1+a2e2+a3e3+a4e4+a5e5+a6e6+a7e7 are called
the real and imaginary parts of the commutative elliptic octonion, respectively.

For a = a′ + a′′e ∈ COp, there exists seven kinds of its conjugate:

(3)

ao1 = a′
(1)

+ a′′
(1)
e,

ao2 = a′
(2)

+ a′′
(2)
e,

ao3 = a′
(3)

+ a′′
(3)
e,

ao4 = a′ − a′′e,

ao5 = a′
(1) − a′′

(1)
e,

ao6 = a′
(2) − a′′

(2)
e,

ao7 = a′
(3) − a′′

(3)
e,

where (1) , (2) , (3) denotes conjugates of the elliptic quaternion q = t+xi+yj+xk ∈
Hp

q(1) = t− xi+ yj − zk,

q(2) = t+ xi− yj − zk,

q(3) = t− xi− yj + zk,

[6].

Property 2.1. Let a = (a0 + a1i+ a2j + a3k)+(a4 + a5i+ a6j + a7k) e ∈ COp.
Then the following identities hold:
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1) a+ ao1 + ao2 + ao3 + ao4 + ao5 + ao6 + ao7 = 8a0,

2) a0 = a+ao1+ao2+ao3+ao4+ao5+ao6+ao7

8
e0,

3) a1 = a−ao1+ao2−ao3+ao4−ao5+ao6−ao7

8
e1,

4) a2 = a+ao1−ao2−ao3+ao4+ao5−ao6−ao7

8
e2,

5) a3 = a−ao1−ao2+ao3+ao4−ao5−ao6+ao7

8
e3,

6) a4 = a+ao1+ao2+ao3−ao4−ao5−ao6−ao7

8
e4,

7) a5 = a−ao1+ao2−ao3−ao4+ao5−ao6+ao7

8
e5,

8) a6 = a+ao1−ao2−ao3−ao4−ao5+ao6+ao7

8
e6,

9) a7 = a−ao1−ao2+ao3−ao4+ao5+ao6−ao7

8
e7.

Proof. Proof can be easily seen by using the equation (1) and the equation (3).

Definition 2.2. Let a ∈ COp. The norm of a = (a0 + a1i+ a2j + a3k) +
(a4 + a5i+ a6j + a7k) e is defined as

(4)

∥a∥8 = a× ao1 × ao2 × ao3 × ao4 × ao5 × ao6 × ao7

=
[
(a0 + a2 − a4 − a6)

2 − α(a1 + a3 − a5 − a7)
2]

×
[
(a0 − a2 + a4 − a6)

2 − α(a1 − a3 + a5 − a7)
2]

×
[
(a0 − a2 − a4 + a6)

2 − α(a1 − a3 − a5 + a7)
2]

×
[
(a0 + a2 + a4 + a6)

2 − α(a1 + a3 + a5 + a7)
2] ≥ 0.

Definition 2.3. The identity of the commutative elliptic octonion

a = (a0 + a1i+ a2j + a3k) + (a4 + a5i+ a6j + a7k) e

is nearby to real vector a ∈ R8×1,

a ∼= a =
[
a0 a1 a2 a3 a4 a5 a6 a7

]T
.

On the other hand, there is bijection transformation φ,

φ : COp →M
a → φ (a)
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(5) φ (a) =



a0 αa1 a2 αa3 a4 αa5 a6 αa7
a1 a0 a3 a2 a5 a4 a7 a6
a2 αa3 a0 αa1 a6 αa7 a4 αa5
a3 a2 a1 a0 a7 a6 a5 a4
a4 αa5 a6 αa7 a0 αa1 a2 αa3
a5 a4 a7 a6 a1 a0 a3 a2
a6 αa7 a4 αa5 a2 αa3 a0 αa1
a7 a6 a5 a4 a3 a2 a1 a0


.

The matrix φ (a) is called the basic matrix of the commutative elliptic octonion a.

Set M , defined by the base matrix of the commutative elliptic octonion, is given
by the following equation

M =





a0 αa1 a2 αa3 a4 αa5 a6 αa7
a1 a0 a3 a2 a5 a4 a7 a6
a2 αa3 a0 αa1 a6 αa7 a4 αa5
a3 a2 a1 a0 a7 a6 a5 a4
a4 αa5 a6 αa7 a0 αa1 a2 αa3
a5 a4 a7 a6 a1 a0 a3 a2
a6 αa7 a4 αa5 a2 αa3 a0 αa1
a7 a6 a5 a4 a3 a2 a1 a0


; ai ∈ R, 0 ≤ i ≤ 7, α < 0


.

Let a and b be two commutative elliptic octonion, then the multiplacition of these
commutative elliptic octonions denoted by

a× b = b× a ∼= φ (a)b =



a0 αa1 a2 αa3 a4 αa5 a6 αa7
a1 a0 a3 a2 a5 a4 a7 a6
a2 αa3 a0 αa1 a6 αa7 a4 αa5
a3 a2 a1 a0 a7 a6 a5 a4
a4 αa5 a6 αa7 a0 αa1 a2 αa3
a5 a4 a7 a6 a1 a0 a3 a2
a6 αa7 a4 αa5 a2 αa3 a0 αa1
a7 a6 a5 a4 a3 a2 a1 a0





b0
b1
b2
b3
b4
b5
b6
b7


.

As can be seen here, in the clause with octonion, the basic matrix is divided into
two as of right and left, whereas in commutative elliptic octonions the basic matrix
is single.

Theorem 2.4. Let a, b ∈ COp and α, β ∈ R. Then the following identities hold:

1) a = b⇔ φ (a) = φ (b) ,
2) φ (a+ b) = φ (a) + φ (b) ,

φ (a× b) = φ (a)φ (b) ,
3) φ (αa+ βb) = αφ (a) + βφ (b) ,

4) ∥a∥8 = |det (φ (a))| ,
5) Trace (φ (a)) = 8a0.
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Proof. Proof of 1), 2) and 3) can be easily seen with the equation (5). 4) can be
obtained by the equations of (3), (4) and (5). Proof of 5) can be easily seen with the
equation (5).

Theorem 2.5. Every commutative elliptic octonion can be represented by an
elliptic quaternion matrix of type 2× 2.

Proof. Let a = a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7 ∈ COp and

a = a′ + a′′e, e2 = 1

where a′ = a0 + a1i+ a2j + a3k, a
′′ = a4 + a5i+ a6j + a7k ∈ Hp.

Then for any b ∈ COp,

ψa : COp → COp

b → ψa (b) = a× b

ψa (1) = a′ + a′′e
ψa (e) = (a′ + a′′e) e = a′e+ a′′e2 = a′′ + a′e

with this transformation set N can be defined the following

N =

{(
a′ a′′

a′′ a′

)
: a′, a′′ ∈ Hp

}
.

Then COp and N are essentially same. ψ that is bijective and protecting the opera-
tion, is denoted by

ψ : COp → N

a = a′ + a′′e→ ψ (a) =

(
a′ a′′

a′′ a′

)
.

Furthermore there is the following relation between the norm of the commutative
elliptic octonion a and ψ (a) ,

∥a∥8 = |detψ (a)| .

3. Commutative Elliptic Octonions Matrices

Now let’s investigate the properties of the commutative elliptic octonion matrices
whose elements are commutative elliptic octonion. Um×n (COp) is defined the set of
the commutative elliptic octonions matrix of m× n type.
Let A = (aij) ∈ Um×n (COp), B = (bij) ∈ Um×n (COp), C = (cij) ∈ Un×p (COp) and
aij , bij , cjk ∈ COp be, then addition and multiplication in the set of the commutative
elliptic octonion matrix is defined by

(6)

A+B = (aij) + (bij) = (aij + bij) ∈ Um×n (COp) ,

AC =

(
n∑

j=1

aijcjk

)
∈ Um×p (COp) ,
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respectively. Considering equation (6), it is given by the following equations

aA = Aa = (aaij) ,
(aA)C = a (AC) ,
(Aa)C = A (aC) ,
(ab)A = a (bA) ,

where a, b ∈ COp.

For A = (aij) ∈ Um×n (COp) there exists seven kinds of the matrix A conjugates:

(7)

Ao1 = (aij
o1)

Ao2 = (aij
o2)

Ao3 = (aij
o3)

Ao4 = (aij
o4)

Ao5 = (aij
o5)

Ao6 = (aij
o6)

Ao7 = (aij
o7) .

AT = (aji) ∈ Un×m (COp) is the transpose of the matrix A ∈ Um×n (COp) and

A
o†i = (Aoi)T ∈ Un×m (COp) is the ith conjugate transpose of the matrix A ∈

Um×n (COp). If A ∈ Un×n (COp) is Hermitian matrix by ith the conjugate, the

equation AA
o†i = A

o†i A is provided.

Theorem 3.1. Let A ∈ Um×n (COp) , B ∈ Un×p (COp) and then the following
properties hold:
i. (Aoi)T =

(
AT
)oi ,

ii. (AB)
o†i

= B
o†i

A
o†i

,

iii. (AB)T = BTAT ,
iv. (AB)oi = AoiBoi ,

v. If A and B are invertible, (AB)−1 = B−1A−1,

vi. If A is invertible,

(
A

o†i
)−1

=
(
A−1

)o†i
,

vii. (Aoi)oj =

{
Aok , i ̸= j ̸= k
A, i = j

where Aoi is ith conjugate of the commutative elliptic octonion matrix (1 ≤ i, j, k ≤
7).

Proof. i, ii, iii, v, vi, vii and viii can be easily proven. We will prove iv.

Let A = A1 + A2e ∈ Um×n (COp) and B = B1 + B2e ∈ Un×p (COp) be where
A1, A2, B1 and B2 are the elliptic quaternion matrices.
Then the following equations are written for i = 1

(AB)o1 = [(A1 +A2e) (B1 +B2e)]
o1

= [(A1B1) + (A2B2) + [(A1B2) + (A2B1)] e]
o1

= [(A1B1 +A2B2) + (A2B1 +A1B2) e]
o1

= (A1B1 +A2B2)
(1) + (A2B1 +A1B2)

(1)e

=
(
A1

(1)B1
(1) +A2

(1)B2
(1)
)
+
(
A2

(1)B1
(1) +A1

(1)B2
(1)
)
e



202 Arzu Sürekçi and Mehmet Ali Güngör

and

Ao1Bo1 = (A1 +A2e)
o1(B1 +B2e)

o1

=
(
A1

(1) +A2
(1)e
)(

B1
(1) +B2

(1)e
)

=
(
A1

(1)B1
(1) +A2

(1)B2
(1)
)
+
(
A2

(1)B1
(1) +A1

(1)B2
(1)
)
e

where o1 is conjugate of the commutative elliptic octonion and (1) is represented con-
jugate of the elliptic quaternion. Since the right-hand sides of the written equations
are the same, the proof for iv is completed. The same way, the proof can be easily
seen for 2 ≤ i ≤ 7.

Theorem 3.2. Let A,B ∈ Un×n (COp) . If AB = I, then BA = I.

Proof. Let A = A1 + A2e ∈ Un×n (COp) and B = B1 + B2e ∈ Un×n (COp) be
where A1, A2, B1, B2 are n×n type of the elliptic quaternion matrices. Considering
the equation (6), the following equation is written

AB = (A1B1 +A2B2) + (A1B2 +A2B1) e = In.

From the equation AB we have(
A1 A2

)( B1 B2

B2 B1

)
=
(
In 0

)
,

so (
A1 A2

A2 A1

)(
B1 B2

B2 B1

)
=

(
In 0
0 In

)
.

Since

(
A1 A2

A2 A1

)
and

(
B1 B2

B2 B1

)
are the elliptic quaternion matrices, we ob-

tain (
B1 B2

B2 B1

)(
A1 A2

A2 A1

)
=

(
In 0
0 In

)
.

On the other hand, we can write B1A1 +B2A2 = In, B1A2 +B2A1 = 0,

(B1A1 +B2A2) + (B1A2 +B2A1) e = In.

Consequently we obtain BA = I. Thus the proof is completed.

Definition 3.3. Let A = A1 + A2e ∈ Un×n (COp) and η (A) be a 2n × 2n type
of the elliptic quaternion matrix. η (A) is denoted by

η (A) =

(
A1 A2

A2 A1

)
.

Further η (A) is refer to the elliptic quaternion adjoint matrix of the matrix A.
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Conclusion 3.4. Let A ∈ Un×n (COp) and η (A) be elliptic quaternion adjoint
matrix of the matrix A. Then, the determinant of the matrix A is described by the
following equation

det (A) = det (η (A))

where det (η (A)) is the determinant of the matrix η (A) .

Example 3.5. Let A =

[
1 + i+ j + k + e ei

ej ek

]
be a commutative elliptic oc-

tonion matrix. Then the elliptic quaternion adjoint matrix of the matrix A is written
by the following equation

η (A) =


1 + i+ j + k 0 1 i

0 0 j k
1 i 1 + i+ j + k 0
j k 0 0

 .
Hence det (A) = det (η (A)) = −α (2 + 4i+ 2j + 4k + 2α+ 2αj) is seen easily.

Theorem 3.6. Let A,B ∈ Un×n (COp) . Then the following properties hold:

i. η (In) = I2n,
ii. η (A+B) = η (A) + η (B) ,
iii. η (AB) = η (A) η (B) ,

iv. If A−1 ̸= 0, η
(
A−1

)
= (η (A))−1,

v. η
(
A

o†i
)
= (η (A))

o†i , 1 ≤ i ≤ 7,

vi. det (AB) = det (A) det (B)

If A−1 ̸= 0, det
(
A−1

)
= (det (A))−1.

Proof. The proof of i, ii, iv, vi can be easily seen. iii and v will show to be proven.

iii. Let A = A1 +A2e ∈ Un×n (COp) and B = B1 +B2e ∈ Un×n (COp).

Then the elliptic quaternion adjoint matrix ofAB = (A1B1 +A2B2)+(A1B2 +A2B2) e
are written

η (AB) =

(
A1B1 +A2B2 A1B2 +A2B2

A1B2 +A2B2 A1B1 +A2B2

)
.

On the other hand the elliptic quaternion adjoint matrix of A = A1 +A2e and B =
B1 +B2e are expressed as

η (A) =

(
A1 A2

A 2 A1

)
, η (B) =

(
B1 B2

B 2 B1

)
,

respectively.
If η (A) η (B) are calculated, then the following equation is written

η (A) η (B) =

(
A1 A2

A 2 A1

)(
B1 B2

B 2 B1

)
=

(
A1B1 +A2B2 A1B2 +A2B2

A1B2 +A2B2 A1B1 +A2B2

)
.

Consequently η (AB) = η (A) η (B) is obtained and the proof is completed.
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v. Let A ∈ Un×n (COp) . Then using by the transpose conjugate and the elliptic
adjoint matrix definitions of the matrix A, can be written by the following equations

A
o†1

= (A1 +A2e)
o†1

= A1
†1 +A

†1
2 e

and

η

(
A

o†1
)

=

(
A1

o†1
A2

o†1

A2

o†1
A2

o†1

)
.

On the other hand the elliptic quaternion matrix and conjugate of the elliptic quater-
nion matrix of the matrix A are defined by

η (A) =

(
A1 A2

A2 A1

)
and (η (A))

o†1 =

(
A1

o†1
A2

o†1

A2
o†1 A2

o†1

)
,

repectively. So
(
η(A)

o†1
)
= (η (A))

o†1 is written. Similarly, the proofs of 2 ≤ i ≤ 7

can be proven.

Definition 3.7. Let A ∈ Un×n (COp) , λ ∈ COp and x ∈ Un×1 (COp). If 0 ̸= x is
provided that Ax = λx, λ is called the eigenvalue of the matrix A. Further x is called
the eigenvector that is corresponding to the eigenvalue λ. The set of eigenvalues of
the matrix A denoted by

ξ (A) = {λ ∈ COp : Ax = λx ,∃x ̸= 0}

and ξ (A) is called a spectrum of the matrix A.

Theorem 3.8. Let A = (aij) ∈ Un×n (COp) . The following are equivalent:

i.A is invertible,
ii.Ax = 0 has a unique solution,
iii.det (η (A)) ̸= 0 i.e η (A) is invertible,

Proof. i. ⇒ ii., it is obvious.

ii. ⇒ iii., let A = A1 +A2e ∈ Un×n (COp) and x = x1 + x2e ∈ Un×1 (COp) .
Then

Ax = (A1 +A2e) (x1 + x2e)
= (A1x1 +A2x2) + (A1x2 +A2x1) e.

Because of Ax = 0, it can be written

(A1x1 +A2x2) = 0 and (A1x2 +A2x1) = 0.

Thus

Ax = 0 if and only if

[
A1 A2

A2 A1

] [
x1
x2

]
=

[
0
0

]
.

Therefore, there is equation in the following

η (A)

[
x1
x2

]
= 0.
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Since Ax = 0 has a unique solution, η (A)

[
x1
x2

]
= 0 has a unique solution. Thus,

since η (A) is elliptic quaternion matrix, η (A) is invertible.

iii. ⇒ i., if η (A) is invertible, then for A = A1 + A2e ∈ Un×n (COp)

there exist a elliptic quaternion matrix

[
B1 B2

B2 B1

]
that is provided the equa-

tion

[
B1 B2

B2 B1

] [
A1 A2

A2 A1

]
=

[
I 0
0 I

]
. Thus, it can written B1A1 + B2A2 =

I and B1A2 +B2A1 = 0. Using by this equation, it is obtained

(B1A1 +B2A2) + (B1A2 +B2A1) e = I.

That is BA = I for B = B1 +B2e. So the matrix A is invertible by Theorem 3.2 and
the proof is completed.
Also, as a consequence of the Theorem 3.8, A has no zero eigenvalue.

If α = −1 is taken in the set of the commutative elliptic octonion, the set of the
commutative octonion is obtained. Based on this situation, let’s give the eigenvalue
and eigenvector definitions that are important for commutative octonions. CO and
Un×n (CO) are denoted by the set commutative octonion and the set of n × n type
of commutative octonion matrix, respectively. H and Hn

n are denoted by the set
commutative quaternion and the set of n×n type of commutative quaternion matrix,
respectively.

Theorem 3.9. A ∈ Un×n (CO) has at the very most 2n commutative quaternion
eigenvalues and 4n complex eigenvalues.

Proof. Let A = A1 + A2e ∈ Un×n (CO) and λ ∈ H be an eigenvalue of the ma-
trix A. Hence there exist x = x1 + x2e ∈ Un×1 (CO) nonzero column vectors that is
provided Ax = λx. Therefore it can be written by the following equation

(A1 +A2e) (x1 + x2e) = λx1 + λx2e,
A1x1 +A2x2 = λx1 and A1x2 +A2x1 = λx2

and this equation provided that(
A1 A2

A2 A1

)(
x1
x2

)
= λ

(
x1
x2

)
.

Thus, it is seen that the commutative octonion matrix A has at the very most 2n
commutative quaternion eigenvalues. Considering that the commutative quaternion
matrix has at the very most 2n complex eigenvalues, it is seen that it has at the very
most 4n complex eigenvalues for the commutative octonion matrix.

Corollary 3.10. Let A ∈ Un×n (CO) and

ξ (η (A)) = {λ ∈ H : η (A) y = λy , ∃y ̸= 0}

be the set of eigenvalues of the adjoint matrix η (A).

ξ (A) ∩H = ξ (η (A))
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is provided where ξ(A) = {λ ∈ CO : Ay = λy , ∃y ̸= 0} is the set of eigenvalues of
the adjoint matrix A.

Theorem 3.11. Let A = A1 + A2e ∈ Un×n (CO) and λ = λ1 + λ2e be an
eigenvalue of A. Then for λ if and only if there exist x1, x2 ∈ Hn

1 (x1 ̸= 0, x2 ̸= 0)
such that [

A1 − λ1I A2 − λ2I
A2 − λ2I A1 − λ1I

] [
x1
x2

]
=

[
0
0

]
.

Proof. Let A = A1 + A2e ∈ Un×n (CO) and λ = λ1 + λ2e be the eigenvalue of A
if and only if there exists x1, x2 ∈ Hn

1 (x1 ̸= 0, x2 ̸= 0) that provided the equation

(A1 +A2e) (x1 + x2e) = (λ1 + λ2e) (x1 + x2e) .

Therefore it can be written

A1x1 +A1x2e+A2x1e+A2x2 = λ1x1 + λ1x2e+ λ2x1e+ λ2x2
(A1x1 +A2x2) + (A1x2 +A2x1) e = λ1x1 + λ2x2 + (λ1x2 + λ2x1) e

and so the following equations are provided

(A1 − λ1In)x1 + (A2 − λ2In)x2 = 0
(A1 − λ1In)x2 + (A2 − λ2In)x1 = 0.

Using these obtained equations, we may write[
A1 − λ1I A2 − λ2I
A2 − λ2I A1 − λ1I

] [
x1
x2

]
=

[
0
0

]
.

Now let’s give the Gershgorin Theorem for commutative octonion matrices, which
is the special case of commutative elliptic octonion matrices.

Theorem 3.12 (Gershgorin Theorem for commutative octonions matrices). Let
A = (aij) ∈ Un×n (CO) . Then

ξ (A) ⊆
n⋃

i=1

{a ∈ CO : ∥a− aii∥ ≤ Ri}

where Ri =
n∑

j=1, i ̸=j

∥aij∥ and the set of eigenvalues of the adjoint matrix A ξ(A) =

{λ ∈ CO : Ay = λy , ∃y ̸= 0}.

Proof. Let A ∈ Mn×n (CO) and λ be eigenvalue of A = (aij) . Besides, x ̸= 0 is
the corresponding eigenvector then Ax = λx. Also xi is component of x such that
∥xi∥ ≥ ∥xj∥ for all j then we have ∥xi∥ > 0 and λxi corresponds to the ith component
of vector Ax which means that

λxi =
n∑

j=1

aijxj .

For this reason, we may write

λxi − aiixi =

n∑
j=1,i ̸=j

aijxj ⇒ (λ− aii)xi =

n∑
j=1,i ̸=j

aijxj .
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Taking norm of both sides in the above equation

∥ (λ− aii)xi∥ =

∥∥∥∥∥∥
n∑

j=1,i ̸=j

aijxj

∥∥∥∥∥∥
is obtained. Then make use of triangle inequality is accessible the following inequali-
ties

∥ (λ− aii)xi∥ ≤
n∑

j=1,i ̸=j

∥aijxj∥,

∥ (λ− aii)∥ ∥xi∥ ≤
n∑

j=1,i ̸=j

∥aij∥ ∥xj∥ ,

∥ (λ− aii)∥ ≤
n∑

j=1,i ̸=j

∥aij∥ = Ri.

So, we have

ξ (A) ⊆
n⋃

i=1

{a ∈ CO : ∥a− aii∥ ≤ Ri}.

Example 3.13. Let A =

[
1 + i+ j + k + e ei

ej ek

]
; A is a commutative octo-

nion matrix. Then the adjoint matrix of A is

η (A) =


1 + i+ j + k 0 1 i

0 0 j k
1 i 1 + i+ j + k 0
j k 0 0

 .
The set of eigenvalues of the matrix η (A) are

ξ (η (A))

=


1
2
(2 + i+ j −

√
4 + 4i+ 4j + 6k + 2k), 1

2
(2 + i+ j +

√
4 + 4i+ 4j + 6k + 2k),

1
2
(i+ j −

√
−4 + 4i− 4j + 6k), 1

2
(i+ j +

√
−4 + 4i− 4j + 6k)}

 .

The Gershgorin disks are

D1 = {q ∈ H : ∥q − (1 + i+ j + k)∥ ≤ 2 } and D2 = {q ∈ H : ∥q∥ ≤ 2 } .

Thus, we obtain

ξ (A) ∩ H = ξ (η (A)) ⊆ D1 ∪D2.

The image of the example above is A in the figure below.
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