• 제목/요약/키워드: Adhesion improvement

검색결과 378건 처리시간 0.025초

자외선 경화 과정에서의 필름 수축현상 개선에 관한 연구 (Study on the Improvement of Film Shrinkage in UV-curing Process)

  • 권윤중;조을룡
    • 폴리머
    • /
    • 제35권4호
    • /
    • pp.320-324
    • /
    • 2011
  • 폴리카프로락톤디올을 디이소시아네이트와 반응하여 우레탄 아크릴레이트를 합성하였고 부틸 아크릴레이트 혹은 부착증진제를 배합하여 그 물성을 조사하였다. 이소포론 디이소시아네이트를 사용한 자외선 경화형 수지에 부틸 아크릴레이트를 일정성분비로 첨가하여 경화 시 수축현상 개선의 정도를 조사해 본 결과 부틸 아크릴레이트의 함량이 15 wt%일 때가 가장 좋은 물성을 발현하였다. 자외선 경화형 수지의 부착력을 증진시키기 위해 2-에틸 헥실 아크릴레이트와 에틸 아크릴레이트를 $85^{\circ}C$에서 4시간동안 합성하여 부착증진제를 얻었으며 이를 자외선 경화형 수지에 일정성분비로 첨가하여 물성을 확인해 보았다. 부착증진제의 함량이 높아질수록 부착력이 증가하였지만 15 wt% 이후로는 연성의 성질이 지나치게 강하여 오히려 부착력이 감소함을 확인할 수 있었다.

거칠기에 따른 반도전-절연 계면층에서 접착특성과 절연성능 (Adhesion and Electrical Performance by Roughness on Semiconductive-Insulation Interface Layer of Silicone Rubber)

  • 이기택;황선묵;홍주일;허창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.78-81
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. Surface structure and adhesion of semiconductive silicon rubber by surface asperity was obtained from SEM and T-peel test. In addition, ac breakdown test was carried out for elucidating the change of electrical property by roughness treatment. From the results, Adhesive strength of semiconductive-insulation interface was increased with surface asperity. Dielectric breakdown strength by surface asperity decreased than initial Specimen, but increased from Sand Paper #1200. According to the adhesional strength data unevenness and void formed on the silicone rubber interface expand the surface area and result in improvement of adhesion. Before treatment Sand Paper #1200, dielectric breakdown strength was decreased by unevenness and void which are causing to have electric field mitigation small. After the treatment, the effect of adhesion increased dielectric breakdown strength. It is found that ac dielectric breakdown strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun;Ha, Ji-Hwan;Song, Hyeonjun;Bae, Joonwon;Park, Sung-Hoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.387-392
    • /
    • 2018
  • Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.

피에르 로빈 연속증의 치료로써 치조 보호 장치를 이용한 혀-하순 유착술 (Tongue-Lip Adhesion Using an Alveolar Protector Appliance for Management of Pierre Robin Sequence)

  • 이장원;박병윤
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.547-551
    • /
    • 2011
  • Purpose: Pierre Robin sequence is a congenital malformation in which micrognathia causes glossoptosis and airway obstruction. If conservative treatment fails, surgical procedures such as tongue-lip adhesion can be performed. However, this procedure remains a subject of debate, with favorable results being countered by reports of complications. To overcome the above limitations, we revised the traditional method of tongue-lip adhesion using an alveolar protector. Methods: Between 1992 and 2011, a total of eight patients were identified with Pierre Robin sequence and were treated with tongue-lip adhesion. Two of these eight tongue-lip adhesion procedures were performed with an alveolar protector. The operative technique for tongue-lip adhesion was similar to that described in other published reports. The alveolar protector was inserted between the ventral surface of the tip of the tongue and the lower labial sulcus. Results: Tongue-lip adhesion failed in two patients because of wound dehiscence. The primary surgical success rate was 66.7%. In the two tongue-lip adhesion procedures performed with the alveolar protector, we observed no postoperative complications. Conclusion: Resistance to traction of the tongue can be encountered with nonunionized symphysis menti, causing loosening of the traction suture through the symphysis menti. This can lead to backward positioning of tongue, resulting in dehiscence of tongue lip adhesion. The alveolar protector is a good adjunct to tongue-lip adhesion because this method avoids postoperative loosening of the traction suture and wound dehiscence. It is a simple and effective auxiliary method that yields functional improvement.

Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

  • de Wit, J.H.W.;van den Brand, J.;de Wit, F.M.;Mol, J.M.C.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.50-60
    • /
    • 2008
  • The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. In addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond with the epoxy coating. Two routes for improvement of adhesion are finally decribed including an interphasial polymeric thin layer and a treatment in boiling water of the substrate before coating takes place. The adhesion properties were finely also studied as a function of the Mg content of the alloys. It was shown that an enrichment of Mg in the oxide could take place when Mg containing alloys are heat-treated. It is expected that for these alloys the (hydr)oxide fraction also depends on the pre-treatment and on the distribution of magnesium as compared to the aluminium hydroxides, with a direct impact on adhesive properties.

반도체 장비 히터로드 유착 개선에 관한 연구 (A Study on Improvement of Heater Rod Adhesion in Semiconductor Equipment)

  • 왕현철;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.67-72
    • /
    • 2020
  • This study analyzes the method of adhesion and improvement between heat.er and RF filter in PE-CVD equipment through TRIZ method and proposes a solution. TRIZ Solution such as function analysis, 9-window matrix, ASIT, and Root cause analysis were used. The contact temperature between the heater and the RF filter was 20% and the surface temperature was lowered to 5.7℃, suggesting an improvement method for the thermal expansion of the PE-CVD equipment hot zone.

Improvement of Plating Characteristics Between Nickel and PEEK by Plasma Treatment and Chemical Etching

  • Lee, Hye W.;Lee, Jong K.;Park, Ki Y.
    • Corrosion Science and Technology
    • /
    • 제8권1호
    • /
    • pp.15-20
    • /
    • 2009
  • Surface of PEEK(poly-ether-ether-ketone) was modified by chemical etching, plasma treatment and mechanical grinding to improve the plating adhesion. The plating characteristics of these samples were studied by the contact angle, plating thickness, gloss and adhesion. Chemical etching and plasma treatment increased wettability, adhesion and gloss. The contact angle of as-received PEEK was $61^{\circ}$. The contact angles of chemical etched, plasma treated or both were improved to the range of $15{\sim}33^{\circ}$. In the case of electroless plating, the thickest layer without blister was $1.6{\mu}m$. The adhesion strengths by chemical etching, plasma treatment or both chemical etching and plasma treatment were $75kgf/cm^2$, $102kgf/cm^2$, $113kgf/cm^2$, respectively, comparing to the $24kgf/cm^2$ of as-received. In the case of mechanically ground PEEKs, the adhesion strengths were higher than those unground, with the sacrifice of surface gloss. The gloss of untreated PEEK were greater than mechanically ground PEEKs. Plating thickness increased linearly with the plating times.

플라즈마 에칭 및 $PdCl_2/SnCl_2$ 촉매조건이 무전해 동도금 피막의 성능에 미치는 영향 (Effect of Plasma Etching and $PdCl_2/SnCl_2$ Catalyzation on the Performance of Electroless Plated Copper Layer)

  • 오경화;김동준;김성훈
    • 한국의류학회지
    • /
    • 제27권7호
    • /
    • pp.843-850
    • /
    • 2003
  • Cu/PET film composites were prepared by electroless copper plating method. In order to improve adhesion between electroless plated Cu layer and polyester (PET) film, the effect of pretreatment conditions such as etching method, mixed catalyst composition were investigated. Chemical etching and plasma treatment increased surface roughness in decreasing order of Ar>HCl>O$_2$>NH$_3$. However, adhesion of Cu layer on PET film increased in the following order: $O_2$<Ar<HCl<NH$_3$. It indicated that appropriate surface roughness and introduction of affinitive functional group with Pd were key factors of improving adhesion of Cu layer. PET film was more finely etched by HCI tolution, resulting in an improvement in adhesion between Cu layer and PET film. Plasma treatment with NH$_3$produced nitrogen atoms on PET film, which enhances chemisorption of Pd$^{2+}$ on PET film, resulting in improved adhesion and shielding effectiveness of Cu layer deposited on the Pd catalyzed surface. Surface morphology of Cu plated PET film revealed that Pd/Sn colloidal particles became more evenly distributed in the smaller size by increasing the molar ratio of PdCl$_2$; SnCl$_2$from 1 : 4 to 1 : 16. With increasing the molar ratio of mixed catalyst, adhesion and shielding effectiveness of Cu plated PET film were increased.d.

ISG법에 의한 금속과 세라믹기판과의 밀착력 향상 (Adhesion improvement between metal and ceramic substrate by using ISG process)

  • 김동규;이홍로;추현식
    • 한국표면공학회지
    • /
    • 제32권6호
    • /
    • pp.709-716
    • /
    • 1999
  • Ceramic is select for an alternative substrate material for high-speed circuits due to its low-thermal expansion. As, in this study, ceramic was prepared by ISG (interlayer sol-gel) process using metal salts and a metal alkoxide as the starting materials. Generally ceramic substrate is used electroless copper plating for the metallization. But it has been indicate weakely the adhesion strength between the substrate and copper layer. Therefore, this research, using the ISG process on the preparation of homogeneous and possible preparation at law temperature fabricated sol solution. Using of the dip coating method was coated for the purpose of giving the anchoring effect on the coating layer and enhancing the adhesion strength between the $Al_2$O$_3$ substrate and copper layer. This study examined primary the characteristic of the sol making condition and differential thermal analysis (DTA) X-ray diffraction (XRD) were mearsured to identify the crystal phase of heat treatment specimens. The morphology of the coated films were studied by scanning electron microscopy(SEM). As a resurt, XRD analysis was obtained patterns of $\alpha$-cordierite after heat-treatment about 2 hours at $1000^{\circ}C$. SEM analysis could have seen a large number of voids on coated film. The more contants of$ Al_2$$O_3$ Wt% was increased the more voids was advanced. Peel adhesion strength has a maximum in the contants of the TEOS:ANE of 1:0.7 mole%. In this case, adhesion strength has been measured 1150gf, peel adhesion strength were about 10 times more than uncoated of the ceramics film.

  • PDF

일측성 완전구순열에서 구순접합술의 효과 (The Effect of Lip Adhesion in Unilateral Complete Cleft Lip)

  • 유선열;김태희;황웅;국민석;김선국;한창훈
    • 대한구순구개열학회지
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 2004
  • 본 연구에서는 구순접합술의 효과를 알아보기 위하여, 일측성 완전구순열을 가진 5명의 환아에서 Millard의 high haU-underminded adhesion과 Seibert 의 lip adhesion을 이용한 구순접합술후 Millard 변법을 이용한구순성형술을 시행하였다. 구순접합술은 상악치조분절 간의 관계를 개선해 주고 구순성형술을 쉽게해주며 최종적인 구순성형술 후 더욱 좋은 결과를 나타냈다. High kalf-underminded adhesion과 Seibert의 lip adhesion은 둘 다 넓은 구순열을 하는데 유용한 방법이며, 특히 Seibert의 lip ahesion은 강한 접합력을 얻을 수 있고 변위된 비중격의 개선 효과가 있으며 보다 심미적인 상순의 연속성을 얻게 해 주었다. 이상의 결과에서 넓은 완전구순열 환아에서 구순성형술에 앞서 구순접합술을 시행하면 상악치조분절 간의 관계를 개선시키고 구순성형술 후 최종적인 결과를 향상시킴을 알 수 있다.

  • PDF