Study on the Improvement of Film Shrinkage in UV-curing Process

자외선 경화 과정에서의 필름 수축현상 개선에 관한 연구

  • Kwon, Youn-Joong (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Ur-Ryong (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 권윤중 (한국기술교육대학교 응용화학공학과) ;
  • 조을룡 (한국기술교육대학교 응용화학공학과)
  • Received : 2011.01.25
  • Accepted : 2011.03.23
  • Published : 2011.07.25

Abstract

Two functional urethane acrylates were synthesized by using polycarprolactonediol (PCLD) and diisocyanate. The synthesized fuctional urethane acrylate was mixed with butyl acrylate(BA) or adhesion promoters, and their properties were investigated. To synthesize an excellent transparent urethane acrylate, isophorone diisocyanate(IPDI) was used. In addition, the effect of adding butyl acrylate for the improvement of shrinkage of urethane acrylate was studied. The results showed that the addition of butyl acrylate improved the shrinkage, and the optimum butyl acrylate content was 15 wt%. Both 2-ethyl hexyl acrylate (2-EHA) and ethyl acrylate(EA) were polymerized at $85^{\circ}C$ for 4 hrs to use as adhesion promoters, and the polymerized adhesion promoters were mixed to the UV-curing resin. The results showed that the adhesion properties increased with the increase of adhesion promoters content up to 15 wt%.

폴리카프로락톤디올을 디이소시아네이트와 반응하여 우레탄 아크릴레이트를 합성하였고 부틸 아크릴레이트 혹은 부착증진제를 배합하여 그 물성을 조사하였다. 이소포론 디이소시아네이트를 사용한 자외선 경화형 수지에 부틸 아크릴레이트를 일정성분비로 첨가하여 경화 시 수축현상 개선의 정도를 조사해 본 결과 부틸 아크릴레이트의 함량이 15 wt%일 때가 가장 좋은 물성을 발현하였다. 자외선 경화형 수지의 부착력을 증진시키기 위해 2-에틸 헥실 아크릴레이트와 에틸 아크릴레이트를 $85^{\circ}C$에서 4시간동안 합성하여 부착증진제를 얻었으며 이를 자외선 경화형 수지에 일정성분비로 첨가하여 물성을 확인해 보았다. 부착증진제의 함량이 높아질수록 부착력이 증가하였지만 15 wt% 이후로는 연성의 성질이 지나치게 강하여 오히려 부착력이 감소함을 확인할 수 있었다.

Keywords

References

  1. J. A. McConnel, Polym. Mater. Sci. Eng., 60, 354 (1989).
  2. X. Yu, B. P. Grady, R. S. Reiner, and S. L. Cooper, J. Appl. Polym. Sci., 49, 1943 (1993). https://doi.org/10.1002/app.1993.070491110
  3. Schuermann, E. Cramer, and F. Reintjes, Eur. Pat. 91104304.0 (1991).
  4. M. Koshinoba, K. K. S. hwang, S. K. Foley, D. J. Yarusso, and S. L. Copper, J. Mater. Sci., 17, 1447 (1982). https://doi.org/10.1007/BF00752259
  5. H. D. Kim, S. G. Kang, and C. S. Ha, J. Appl. Polym. Sci., 60, 799 (1992).
  6. C. Decker and K. Zahouily, Polym. Degrad. Stabil., 64, 293 (1999). https://doi.org/10.1016/S0141-3910(98)00205-5
  7. D. J. Lee, J. Y. Choi, and H. D. Kim, J. Korean Fiber Soc., 36, 798 (1999).
  8. M. Debowski and A. Balas, Eur. Polym. J., 36, 601 (2000). https://doi.org/10.1016/S0014-3057(99)00095-6
  9. M. Szycher, Szycher's Handbook of Polyurethanes, Chap. 16, CRC Press, Boca Raton, 2000.
  10. J. C. Schmidle, J. Coat. Fabrics, 8, 10 (1978). https://doi.org/10.1177/152808377800800102
  11. T. Nakagawa and J. Wei, Proc. Fourth Int. Conf. on Technol. Plasticity, 1993.
  12. H. Ono and N. Kawatsuki, Jpn. J. Appl. Phys., 33, 6268 (1994). https://doi.org/10.1143/JJAP.33.6268
  13. C. J. Schmidle, J. Coat. Fabrics, 8, 10 (1978). https://doi.org/10.1177/152808377800800102
  14. H. Aota, S. Y. Ko, Y. K. Lim, and S. K. Lee, J. Soc. Adhes. Interf. (Korea), 3, 45 (2002).
  15. H. S. Bang and U. R. Cho, Polymer(Korea), 32, 549 (2008).
  16. C. H. Lim, H. Ryu, and U. R. Cho, Polymer(Korea), 33, 319 (2008).
  17. M. Lee, H. Ryu, and U. R. Cho, Polymer(Korea), 34, 58 (2008).