DOI QR코드

DOI QR Code

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun (Department of Mechanical Engineering, Soongsil University) ;
  • Ha, Ji-Hwan (Department of Mechanical Engineering, Soongsil University) ;
  • Song, Hyeonjun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Bae, Joonwon (Department of Applied Chemistry, Dongduk Women's University) ;
  • Park, Sung-Hoon (Department of Mechanical Engineering, Soongsil University)
  • Received : 2018.06.30
  • Accepted : 2018.08.24
  • Published : 2018.12.25

Abstract

Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. K.M. Lee, S.-E. Lee, Y.-S. Lee, J. Ind. Eng. Chem. 56 (2017) 435. https://doi.org/10.1016/j.jiec.2017.08.001
  2. K. Chu, S.-H. Park, J. Ind. Eng. Chem. 35 (2016) 195. https://doi.org/10.1016/j.jiec.2015.12.033
  3. C.H. Yoon, H.S. Lee, Polym. Sci. Tech. 18 (2007) 4.
  4. P. Theilmann, D.-J. Yun, P. Asbeck, S.H. Park, Org. Electron. 14 (2013) 1531. https://doi.org/10.1016/j.orgel.2013.02.029
  5. S.H. Park, P.R. Bandaru, Polymer 51 (2010) 5071. https://doi.org/10.1016/j.polymer.2010.08.063
  6. F.M. Du, J.E. Fischer, K.I. Winey, Phys. Rev. B 72 (2005) 121404. https://doi.org/10.1103/PhysRevB.72.121404
  7. C.H. Liu, H. Huang, Y. Wu, S.S. Fan, Appl. Phys. Lett. 87 (2005) 213108. https://doi.org/10.1063/1.2133916
  8. P.C. Song, C.H. Liu, S.S. Fan, Appl. Phys. Lett. 88 (2006) 153111. https://doi.org/10.1063/1.2194267
  9. G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, W.R. Lee, J. Ind. Eng. Chem. 21 (2015) 11. https://doi.org/10.1016/j.jiec.2014.03.022
  10. L.Y. Meng, S.J. Park, Carbon Lett. 15 (2014) 89. https://doi.org/10.5714/CL.2014.15.2.089
  11. L. Reng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 14 (2002) 1857. https://doi.org/10.1002/adma.200290020
  12. X.-M. Li, D. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 36 (2007) 1350. https://doi.org/10.1039/b602486f
  13. M. Ma, R.M. Hill, C. Opin. Colloid Interface Sci. 11 (2006) 193. https://doi.org/10.1016/j.cocis.2006.06.002
  14. C. Neinhuis, W. Barthlott, Ann. Bot. 79 (1997) 667. https://doi.org/10.1006/anbo.1997.0400
  15. D. Khojasteh, N.M. Kaxerooni, S. Salarian, R. Kamali, J. Ind. Eng. Chem. 42 (2016) 1. https://doi.org/10.1016/j.jiec.2016.07.027
  16. X. Feng, L. Jiang, Adv. Mater. 18 (2006) 3063. https://doi.org/10.1002/adma.200501961
  17. X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang, J. Mater. Chem. 18 (2008) 621. https://doi.org/10.1039/B711226B
  18. R.S. Voronov, D.V. Papavassiliou, Ind. Eng. Chem. Res. 47 (2008) 2455. https://doi.org/10.1021/ie0712941
  19. Z. Guo, W. Liu, B.L. Su, J. Colloid Interface Sci. 353 (2011) 335. https://doi.org/10.1016/j.jcis.2010.08.047
  20. V.A. Ganesh, H.K. Raut, A.S. Nair, S. Ramakrishna, J. Mater. Chem. 21 (2011) 16304. https://doi.org/10.1039/c1jm12523k
  21. Y.K. Cho, E.J. Park, Y.D. Kim, J. Ind. Eng. Chem. 20 (2014) 1231. https://doi.org/10.1016/j.jiec.2013.08.005
  22. L.Y. Meng, K.Y. Rhee, S.J. Park, J. Ind. Eng. Chem. 20 (2014) 1672. https://doi.org/10.1016/j.jiec.2013.08.015
  23. S.H. Park, E.H. Cho, J. Sohn, P. Theilmann, K. Chu, S. Lee, Y. Sohn, D. Kim, B. Kim, Nano Res. 6 (2013) 389. https://doi.org/10.1007/s12274-013-0316-8
  24. S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, J. Phys. Chem. 100 (1996) 19512. https://doi.org/10.1021/jp9616728
  25. T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir 12 (1996) 2125. https://doi.org/10.1021/la950418o
  26. Y. Xu, W.H. Fan, Z.H. Li, D. Wu, Y.H. Sun, Appl. Optics 42 (2003) 108. https://doi.org/10.1364/AO.42.000108
  27. A. Lafuma, D. Quere, Nat. Mater. 2 (2003) 457. https://doi.org/10.1038/nmat924
  28. A. Marmur, Langmuir 20 (2004) 3517. https://doi.org/10.1021/la036369u
  29. C.H. Ahn, Y.B. Baek, C.H. Lee, S.O. Kim, S.H. Kim, S.H. Lee, S.H. Kim, S.S. Bae, J.B. Park, J.Y. Yoon, J. Ind. Eng. Chem. 18 (2012) 1551. https://doi.org/10.1016/j.jiec.2012.04.005
  30. H.E. Lim, J.S. Park, W.D. Kim, Elastomers Compos. 44 (2009) 250.
  31. H.S. Lim, KIC News 15 (2012) 21.
  32. C. Neinhuis, W. Barthlott, Ann. Bot. 79 (1997) 667. https://doi.org/10.1006/anbo.1997.0400
  33. J.H. Zou, H. Chen, A. Chunder, Y.X. Yu, Q. Huo, L. Zhai, Adv. Mater. 20 (2008) 3337. https://doi.org/10.1002/adma.200703094
  34. H. Ogihara, J. Okagaki, T. Saji, Langmuir 27 (2011) 9069. https://doi.org/10.1021/la200898z
  35. H. Ogihara, J. Xie, J. Okagaki, T. Saji, Langmuir 28 (2012) 4605. https://doi.org/10.1021/la204492q
  36. H. Ogihara, J. Xie, T. Saji, Colloids Surf. A 434 (2013) 35. https://doi.org/10.1016/j.colsurfa.2013.05.034
  37. P.A. Levkin, F. Svec, J.M.J. Frechet, Adv. Funct. Mater. 19 (2009) 1993. https://doi.org/10.1002/adfm.200801916
  38. W. Wu, X. Wang, X. Liu, F. Zhou, ACS Appl. Mater. Interfaces 1 (2009) 1656. https://doi.org/10.1021/am900136k
  39. P.N. Manoudis, I. Karapanagiotis, A. Tsakalof, I. Zuburtikudis, C. Panayiotou, Langmuir 24 (2008) 11225. https://doi.org/10.1021/la801817e
  40. P. Li, Y. Shan, X. Yin, L. Jin, J. Deng, IEEE (2012) 642.
  41. P. Li, Y. Shan, L. Liu, J. Deong, O.G. Chooon, X. Yin, IEEE (2012) 954.
  42. S.P. Bao, G.D. Liang, S.C. Tjong, IEEE Trans. Nanotechnol. 8 (2009) 729. https://doi.org/10.1109/TNANO.2009.2023650

Cited by

  1. Fabrication of Hydrophobic Coatings Using Sugarcane Bagasse Waste Ash as Silica Source vol.9, pp.1, 2018, https://doi.org/10.3390/app9010190
  2. Sprayable, Superhydrophobic, Electrically, and Thermally Conductive Coating vol.8, pp.2, 2021, https://doi.org/10.1002/admi.201902110