• Title/Summary/Keyword: Adaptive Loop

Search Result 508, Processing Time 0.027 seconds

A Sensorless Speed Control of Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer (적응 적분바이너리 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어)

  • Kang, Hyoung-Seok;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.71-80
    • /
    • 2007
  • A control approach for the sensorless speed control of interior permanent magnet synchronous motor(IPMSM) based on adaptive integral the binary is proposed. With a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the width of the constant boundary limits the steady state estimation accuracy and robustness. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral augmented switching the hyperplane equation. By mean of integral characteristics, the rotor speed can be finely estimated and utilized for a sensorless speed controller for IPMSM. The proposed adaptive integral binary observer applies an adaptive scheme, because the parameters of the dynamic equations such as the machine inertia or the viscosity friction coefficient is not well known and these values can be easily changed generally during normal operation. Therefore, the observer can overcome the problem caused by using the dynamic equations, and the rotor speed estimation is constructed by using the Lyapunov function. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

A Speed Sensorless Vector Control for Permanent Magnet Synchronous Motors based on an Adaptive Integral Binary Observer

  • Choi Yang-Kwang;Kim Young-Seok;Han Yoon-SeoK
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.70-77
    • /
    • 2005
  • This paper presents sensorless speed control of a cylindrical permanent magnet synchronous motor (PMSM) using the adaptive integral binary observer. In view of the composition with a main loop regulator and an auxiliary loop regulator, the normal binary observer has the feature of chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer, a new binary observer is formed by the addition of extra integral dynamics to the existing switching hyperplane equation. Also, because the parameters of the dynamic equations such as machine inertia or viscosity friction coefficient are not well known and these values can be changed during normal operations, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that the observer may overcome the problems caused by using dynamic equations. The rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to prove the effectiveness of the approach.

A Study on The Adaptive Robust Servocontroller (견실한 서보적응제어기에 관한 연구)

  • 김종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.513-525
    • /
    • 1990
  • This paper presents Adaptive Robust Servocontrol(ARSC) scheme, which is an explicit(or indirect) pole-assignment adaptive algorithm with the property of "robustness". It guarantees asymptotic regulation and tracking in the presence of finite parameter perturbations of the unknown plant(or process) model. The controller structure is obtained by transforming a robust control theory into an adaptive control version. This controller structure is combined with the model estimation algorithm which includes a dead-zone for bounded noise. It is proved theoretically that this combination of control and identification is globally convergent and stable. It is also shown, through a real-time simulation study, that the desired closed-loop poles of the augmented system can be assigned directly, and that the adjustment mechanism of the scheme tunes the controller parameters according to the assigned closed-loop poles.oop poles.

An Improvement in Adaptive Estimation for a Tracking System with Additive Measurement Impulse noise (충격성 잡음이 혼입되는 추적계통의 적응 추정 개선)

  • 윤현보;박희창
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.5
    • /
    • pp.519-526
    • /
    • 1987
  • An adaptive estimation system which operates propoerly in the environments corrupted by additive impulse noise in addition to the white Gaussian noise has been proposed. A feed forward loop is inserted into the adaptive estimator proposed by R. L. Moose for a system with an unknown measurement bias by which the improved adaptive estimator is processed successfully without the sum of the time varying weights being zero even when the measurement system is added impulue noise. Successfully processed adaptive estimator has been obtained under the large impulse noise in addition to randomly varying unknown biases condition by giving sufficient large value to the elements of discrete vector on the computer simulation.

  • PDF

ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP CONTROL

  • Sangha, M.S.;Yu, D.L.;Gomm, J.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.637-650
    • /
    • 2007
  • A new on-line fault detection and isolation(FDI) scheme has been proposed for engines using an adaptive neural network classifier; this paper investigates the robustness of this scheme by evaluating in a wide range of operational modes. The neural classifier is made adaptive to cope with the significant parameter uncertainty, disturbances, and environmental changes. The developed scheme is capable of diagnosing faults in the on-line mode and can be directly implemented in an on-board diagnosis system(hardware). The robustness of the FDI for the closed-loop system with crankshaft speed feedback is investigated by testing it for a wide range of operational modes, including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all changes occurring simultaneously. The evaluations are performed using a mean value engine model(MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.

Adaptive Predictive Control using Multiple Models, Switching and Tuning

  • Giovanini Leonardo;Ordys Andrzej W.;Grimble Michael J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.669-681
    • /
    • 2006
  • In this work, a new method of design adaptive controllers for SISO systems based on multiple models and switching is presented. The controller selects the model from a given set, according to a switching rule based on output prediction errors. The goal is to design, at each sample instant, a predictive control law that ensures the robust stability of the closed-loop system and achieves the best performance for the current operating point. At each sample the proposed control scheme identifies a set of linear models that best characterizes the dynamics of the current operating region. Then, it carries out an automatic reconfiguration of the controller to achieve the best possible performance whilst providing a guarantee of robust closed-loop stability. The results are illustrated by simulations a nonlinear continuous and stirred tank reactor.

A Speed Control of Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer without Speed and Position Sensors (적응적분바이너리 관측기를 이용한 위치 및 속도 센서없는 영구자석 동기전동기의 속도제어)

  • Lee, Joung-Hum;Choi, Yang-Kwang;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.83-85
    • /
    • 2003
  • This paper presents a speed control of permanent magnet synchronous motors (PMSM) using an adaptive integral binary observer without speed and position sensors. In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. In order to improve the steady state performance of the binary observer, the proposed adaptive integral binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. The effectiveness of the proposed system is conformed by the experimental results.

  • PDF

Flexible Robot Manipulator Path Design and Application of Perturbation Adaptive Control to Reduce Residual Vibration (잔류진동 감소를 위한 탄성 로봇 매니퓨레이터 경로설계 및 섭동적응제어의 적용)

  • Park, K.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A method is presented for generating the path which significantly reduces residual vibration of a flexible robot manipulator and applying control theory to track the desired path. The desired path is optimally designed so that the system completes the required move with minimum residual vibration. A closed loop control theory is applied to track the planned path in the case of load variation. Specifically, it is desired that the optimally designed path has a better trajectory tracking capabilities during the residual vibration over the cycloidal path, in various cases of load. Perturbation adaptive control is used as closed loop control scheme. A planar two link manipulator is used to evaluate this method.

  • PDF

New single-phase Phase-Locked Loop system composed of Adaptive Linear Combiner (Adaptive Linear Combner로 구성된 새로운 단상 Phase Locked Loop 시스템)

  • Bae B. Y.;Lee B. K.;Baek S. T.;Han B. M.;Kim H. W.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.583-586
    • /
    • 2004
  • A typical method to control the single-phase power converter system is to utilize the zero-crossing PLL. However, this method is vulnerable to the voltage disturbance and affects the performance of controller This paper proposes a new single-phase PLL system that is composed of the adaptive linear combiner and the PI control. The operational principle was analyzed through theoretical approach and the performance was verified through simulations with MATLAB. The proposed PLL system shows rapidness and robustness in control under the voltage disturbances such as the sag, harmonics, and phase jump.

  • PDF

Adaptive Control of a Class of Nonlinear Systems Using Multiple Parameter Models

  • Lee Choon-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.428-437
    • /
    • 2006
  • Many physical systems are hybrid in the sense that they have continuous behaviors and discrete phenomena. In control system with multiple models, switching strategy and stability of the closed-loop system under switching are very important issues. In this paper, a novel adaptive control scheme based on multiple parameter models is proposed to cope with a change in Parameters. Switching strategy guarantees the non-increase in the global control Lyapunov function if the estimation of Lyapunov function value converges. Least-square estimation is used to find the estimated value of the Lyapunov function. Switching and adaptation law guarantees the stability of closed-loop system in the sense of Lyapunov. Simulation results on anti-lock brake system are shown to verify the effectiveness of the proposed controller in view of a large change in system parameters.