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Adaptive Predictive Control using Multiple Models, Switching and Tuning

Leonardo Giovanini, Andrzej W. Ordys, and Michael J. Grimble

Abstract: In this work, a new method of design adaptive controllers for SISO systems based on
multiple models and switching is presented. The controller selects the model from a given set,
according to a switching rule based on output prediction errors. The goal is to design, at each
sample instant, a predictive control law that ensures the robust stability of the closed-loop system
and achieves the best performance for the current operating point. At each sample the proposed
control scheme identifies a set of linear models that best characterizes the dynamics of the
current operating region. Then, it carries out an automatic reconfiguration of the controller to
achieve the best possible performance whilst providing a guarantee of robust closed-loop stability.
The results are illustrated by simulations a nonlinear continuous and stirred tank reactor.

Keywords: Adaptive control, infinite controller cover set, multiple models, multi-objective

optimization, predictive control.

1. INTRODUCTION

The control of dynamical systems in the presence of
large uncertainties and constraints is of great interest
for many dpplications. Such problems emerge when
there are large variations of parameters due to changes
in the operating region. They arise from the fact that
processes are nonlinear, and nowadays are operated in
wider regions subject to larger disturbances, frequent
set point changes and failures in the system. In such
cases, the controller has to determine the specific
situation that exists at any instant and take the
appropriate control action. Accomplishing this rapidly,
accurately and in stable fashion is the objective in
control design.

Model predictive control (MPC) is one of the few
techniques able to cope with constraints and modelling
errors ifi an explicit manner. There are many ways of
considering modelling errors. The most popular
approach is the minimization of worst-case controller
cost [1]. Lee and Yu [2] summarized the development
of so called min-max algorithms and pointed out that
the closed-loop implementation provides a good
performance and they also discussed computationally
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tractable approximations. The main disadvantage of
the minmax approach is that control performance may
be too conservative in some cases [2]. Since all
possible plant dynamics are considered equally likely
at every sample, the controller only focuses on the
worst-case. Alternative formulations of robust MPC
based on a generalized objective function [3], cost
function constraints [4] and multiobjective optimiza-
tion [5] have being presented lately. To overcome this
limitation, several authors have proposed nonlinear
MPC algorithms based on neural networks [6], fuzzy
logic [7], Hammerstein [8] and Wiener models [9,10],
Volterra series [11], successive linearization [12],
input-output models [13] and multiple models [14].

The problem described in the above is one of
adaptive control in which, typically, controller
parameters are adjusted on the basis of plant
parameter estimates. However, if conventional
adaptive control is used, experience indicates that the
presence of large parameter errors will generally
result in slow convergence with large tracking errors
during the transient phase. An alternative approach
involves the use of multiple models, switching and
tuning. This technique was introduced in the early
1990’s {15] and later developed in [16-18].

A standard switching controller consists of an inner
loop where the candidate controller is connected in
closed-loop with the system, and an outer loop where
based on a performance criterion and input-output
data the supervisor decides which controller to select
and when to switch to a different one. The supervisor
then selects the candidate associated with the model
that minimizes a performance index. Implementation
and analysis of the switching control scheme is often
simplified by considering a finite set of candidate
controllers. This set is called a controller cover set
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[16]. In this framework, robustness and performance
issues are addressed off-line when the controller cover
set is designed. If the controller cover set consists of a
small number of controllers, each one stabilizing a
wide set of models, then stability is generally rapidly
achieved, even before a large amount of information
has been accrued, but in the long run the resulting
performance is typically low. In contrast, if the
controller cover consists of a large number of
controllers, each one tailored to a narrow set of
models, a high performance control system is
potentially achieved, but poor performance will
possibly occur until there is sufficient data to obtain
an accurate estimate of the process model.

An alternative approach, based on a probability
measure computed on-line was suggested recently.
Campi et al. [29] has proposed a hierarchical
switching scheme based on a probability measure of
the likelihood of the different models, which is
estimated on-line from the data is obtained by the
control system. This probability measure is employed
to select a controller that suitably compromises
robustness versus performance, given the current level
of uncertainty. As time goes by, the probability
distribution becomes more- sharply peaked around the
model that best describes the system.

The main contribution of this work is a robust
adaptive predictive controller based on receding
horizon and multiple models, switching and tuning
techniques. The control law is designed by a multi-
objective optimization that employs a set of LTI
models to characterize the system dynamic with a
minimum error at every sample. This set is built from
a bigger one, which is employed to describe the
system in the operating domain; using switching
techniques. The switching is performed directly in the
objective function and constraints of the optimization
problem. The proposed approach to adaptive control
corresponds to having an infinite number of
controllers in the multiple-model implementation,
with the additional benefit of constraints handling.

The paper is organized as follow: Firstly, in Section
2 the formulation of the predictive feedback control is
revisited. The meaning of the design parameters is
discussed. The original formulation is modified by
changing the constraint employed to guarantee the
closed loop stability. Then, in Section 3 the multiple
models, switching and tuning approach is introduced.
This involves modifying the objective function and
the constraints employed by the optimization problem
to design the controller. At the end of this section, a
robust switching strategy that takes account of the
uncertainty during the controller design is introduced.
Section 4 shows the results obtained from the
application of the proposed algorithm to a nonlinear
continuous  stirred tank reactor. Finally, the
conclusions are presented in Section 5.

2. ROBUST PREDICTIVE FEEDBACK
CONTROL

MPC is an optimal control approach involving the
direct use of a system model and on-line optimization
technique to compute the control actions such that a
measure of the closed-loop performance is minimized
and all constraints are and will be fulfilled [1]. The
basic formulation implies a control philosophy similar
to an optimal open-loop control law which includes,
in a simple and efficient way, constraints present in
the system. However, as pointed out by Lee and Yu
[2] this formulation can give poor closed-loop
performance, especially when uncertainties are
assumed to be time-invariant in the formulation. This
is true even when the underlying system is time-
invariant. When the uncertainty is allowed to vary
from one time step to next in the prediction, the open
loop formulation gives robust, but cautious, control.

A way to solve these problems is to introduce a
feedback action in the predictive controller [5]. This
idea implies the use of the closed-loop prediction error
instead of the open-loop prediction error to compute
the future control actions. For a stable SISO system
described by a FIR model, the predictive control law
is given by

uk) =3 14,6 k= )+ 30 dpulk= ), ()

where v and w are the error and the control horizons
of the control law, g; j = 0,1,...,v+w are the control
law’s parameters, u(k—j) is the past control action at
time k5 and é°(J,k—) is the J step ahead predicted
error based on measurements until time &k

& k= jy=elk—j)-P (J,z7 Julk—j). )

In this equation e(k—)=r(k—)—y(k—j) is the measured
error at time k- and P (J,z7') is the transfer
function of the open-loop predictor given by [5]

P (Jrzil) = "iJ271 +Zj’=J+(};jzij _Zj,:l ];/'2‘7].’ (3)

where N is the FIR model length, 4; is the step
response coefficient and 4, is the Markov coefficient

of the model of the system respectively.

The control law (1) has three set of parameters to be
tuned: the error and the control horizons (v and w), the
prediction time J and the parameters g; j=0,...,v+w. It
includes a feedback action-based on present and past
errors e(k—j) j=0,...,v— which improves the closed-
loop system response [19]. This is the main reason
why the control law (1) reduces the effect of non
measurable disturbances more aggressively than a
standard model predictive control.

The stability of the predictive feedback controller
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depends on the parameters g; j = 0,...,v+w and the
prediction time J simultaneously. This result is
summarized in the following theorem.

Theorem 1: Given a system controlled by a
predictive feedback controller (1), the closed-loop
systemn will be robustly stable if and only if

I_ijllqj+v +EIJ > i

v
Zj:() qj S+

where 4; is the Markov coefficient of the system.

Proof: See Appendix A. ad

Assuming that a polytopic linear model (PLM) W
of m linear FIR models characterizes the behavior of
an uncertain, as well as a nonlinear, stable system up
to a desired accuracy € over a bounded region O , the
robust stability problem becomes the problem of
finding a set of parameters g; and J such that (4) is
satisfied for all models of W/

ﬁf)*izllhf'f’f]’ (4)

=30 |, ‘L .
Zj:o qjl Jj=J+1 /=1,...m =

where & i is the Markov coefficient of the /th model
[=1,...,mofthe PLM W/ .

If the prediction time J is given, the stability
problem reduces to the problem of finding a set of
parameters g;j=0,...,v+w, so that (4) is satisfied for all
models of W simultaneously. This condition can be
written as a set of m linear inequalities

1-3" lq. M
__vailﬂwp S b+ Xk, k|l =1,....m,(6)
Zj=0 qjl J=J+1 J=t

to be satisfied simultaneously.

Equations (4)-(6) guarantee the robust superstability
of the closed-loop system [19]. These stability
conditions have being formulated as a condition on
the models and controller parameters, rather than in
terms of closed-loop eigenvalues position. Superstable
systems are a narrower class than stable systems. In
the parameters space, the stabilization problem
becomes convex and numerous problems presenting

min wF(r(k +0),y,(,k),u,(i,k))

q; F=01,...,v+
st.

I k+i) =y, ik + AU (1)

Jik) = y (k) + PG Y () + X by, (e + )
w (LK=" (g8 U k+i-D+2 4,

1>3" 14,
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Fig. 1. Structure of the predictive controller.

serious difficulties within the framework of the
standard theory, such as simultaneous stabilization of
more than two models and robust stabilization under
parametric uncertainty, are solved easily for this class
of systems.

Conditions for superstability have been introduced
by several authors [20-22] and they have been applied
to control problems [22,23]. Discrete superstable
systems enjoy numerous important properties [22,24].
For this work the most relevant are:

1. Superstability guarantees the existences of a
positively invariant set,

2. Superstability implies the existence -of a non
quadratic Lyapunov function, and

3. Superstability is retained in the time varying case,
as well in the presence of time varying and
nonlinear perturbations.

In the following sections we will employ these

properties to guarantee the stability of the LTV system,

used to approximate the original nonlinear system.

The LTV system will be built from the set of LTI

models W using a switching strategy. In the following

paragraph we will introduce an optimization program

to solve the controller design problem. The structure

of the resulting controller is shown in Fig. 1.

Given a prediction horizon J and the structure of
the control law, the parameters g; j=0,...,v+w can be
found solving the following nonlinear optimization
problem {5]

iel0,V] (7a)
ie[0,V], (7b)
le[1,m], (7¢)
u,(k+i—j), (7d)
(7e)
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where V is the overall number of sampling instants
considered.

The objective function F(-) (equation (7a)) measures
the future closed loop performance of the system. It
should consider all models used to represent the
controlled system, and it can be given by a general
expression

F(y=2" 7./, (rtk+0),3,6,0),u,(i,k)) i €[0,V],(8)

where y>0 are arbitrary weights and f; is the
performance index for model / measured by any
weighting norm

S0 =

é(i,k)”g +uGi, k)|, i€[0.V],1< p<w. (9)

The first constraint (equation (7b)) is the corrected
open loop prediction y, (J,k+i) for each model, which
is employed to compute the control action u,(i,k). It
only uses the information available until time k+i. The
second constraint (equation (7¢)) is the closed loop
prediction y1(i,k) for each model, which is employed
to evaluate the system performance and constraints
and to compute ﬁlo(J,kJri). It uses all the information
available at time k+i. The third equation (equation
(7d)) denotes the control law (1). Finally, the last
constraint (equation (7¢)) is the stability condition (6),
which included ensuring superstability of the closed-
loop system.

The optimization problem (7) contains a set of
constraints for each model of W , with control
actions wu(k—) j=1,..,w and past errors e(k—)
7=0,1,...,v as common initial conditions and the
parameters of the control law as common variables.
The optimization problem readjusts the control law
(1) until all design conditions are simultaneously
satisfied, by a numerical search through a sequence of
dynamic simulations. This reduces the computational
burden in the minimization of the performance
measure and fulfillment of constraints. Furthermore it
replaces the open-loop prediction by a stable closed-
loop prediction, thereby avoiding the ill-conditioning
problems.

This formulation of predictive control allows for
including constraints in the structure and parameters
of the control law ¢; j=0,...,v+w since they are the
decision variables of the optimization problem (7). In
this way, the resulting control law will combine
features from predictive and variable structure control
techniques [25,26]. This idea will help to improve the
performance and robustness of the closed-loop system
and to overcome the performance limitations imposed
by the use of a time-invariant control law [25]. For
example, the integral mode, which is employed to
remove the steady-state error, can be included in the
control law only when the system has reached its
settling time. In this way, the closed-loop poles can be

placed freely during the transient period, so that the
performance is optimized and the integral mode is
included after the transient has finished.

The stability of the closed-loop relies on the
feasibility of the optimization problem (7). If there is
no other constraint than the stability constraint (7e),
the optimization problem is always feasible [22].
However, if there are constraints in the input (g,(-))
and output (g,(-)) variables

g, (rtk+1),3,(1,k),u,(1,k)) <0 ie[0,V],l€[1,m],
& (15w (0,6) <0,

the feasibility of the resulting optimization problem
can be guaranteed by adding slack variables to
constraints

g, (r(k +1),y,30,k),u,@, k)) <v, v, 20,
g, ( y,(8,k),u, (@, k)) <u, v, =20,

and penalizing their deviation in the objective
function F’

F= i%(k)fz (r(k+), y,G.5), 4, G, k) +0; +0.
I=1

3. MULTIPLE MODELS, SWITCHING AND
TUNING CONTROL

In many industrial applications it is frequently the
case that during the design of a controller the plant is
assumed approximately linear, with a given
uncertainty. In practice, this assumption involves a
simplification that is too strong. The resulting
controller often leads to either intolerable constraint
violations or over conservative control actior:s [2].

In order to guarantee constraint fulfillment for
every possible realization of the system within a
polytopic linear model (PLM) W/, it is clear that the
control action has to be chosen safe enough to cope
with the effect of the worst realization [27]. However,
to improve the system’s performance and robustness
over a wider operational range and satisfy constraints,
it is necessary to employ a better approximation to
design the control law. A way of implementing this

Current plant
dynamic

~ operating

e region (D)

Fig. 2. Geometrical interpretation of index (11).



Adaptive Predictive Control using Multiple Models, Switching and Tuning 673

idea is to build a LTV g-accurate model [28] from the
PLM W using a switching rule. In this way, the
closest model to the current system dynamic is
identified (Fig. 2) and, then it is employed to design
the control law. This idea implies the combination of
multiple models, switching and tuning control
(MMST) [15-17], with receding horizon techniques.

Generally, the switching algorithm is implemented
by first computing performance indices (k) I=1,....m
based on the output prediction error

gk)=y(k)=y, (k) [=1,..,m,

where y(k) is the output of the /-th model. Then, based
on performance indices /(k), a supervisor selects the
candidate controller that is better tuned to the
currently estimated system model

L (k)= min {1,(6)}=1,(k). (10)

The compromise between robustness and performance
is made off-line when the controller cover set is
designed [16,17].

The switching criterion I(k) plays a crucial role in
the design of multiple MMST systems. The switching
criterion depends upon the prior information assumed
about the plant, and is chosen to ensure stability as
well as to improve the performance'. The most
common index employed in switching control can be
presented as follows

L) =a s+ B3 A e (R 1=1m, (1)

where 20, >0, 4,€[0,1] and Ny is the time instant
when the change happens. Different performance
indices can be obtained with different parameter
values. For example, if £=0, the indices (11) become

L(ky=a,& (k) 1=1,..,m, (12)

which ensures a fast adaptation response. However,
the type of index defined in (12) is sensitive to
uncertainties, disturbances and noise, deteriorating the
performance of the adaptive systems. An index that
overcomes these problems can be obtained by fixing
a=0, in this case the index (11) becomes

k

Lk =B, A e (). (13)

This index is less sensitive to noise and disturbance
than index (12) because all prior data, including the
most recent measurement, is exponentially weighted.

A switching scheme based on a different criterion to measure
the distance between two models, like gap-metric or a
probability measure, can be employed. However, this topic is
out of scope of this paper.

The parameter A determines the rate at which data
enter into the calculation of index /;(k) and the depth
of memory. It therefore introduces a lag in the
selection of the model which is proportional to A: as
A—1 all the data is equally considered and the lag is
bigger, but when A=0, the index (13) becomes (12).In
the predictive feedback control framework analyzed in
Section 2, the switching scheme can be implemented
by calculating and comparing the above indices every

- sampling instant, generating the switching variables

Si(k) from

S,(k)= H(AL(K)) 1=1,...,m, (14)
where

AL(kY =1 (k)-1,(k) 1=1,...,m, (15)

and H(x) is the Heaviside unit step function given by

1 x>0,

0 x <0. (16)

H,(x)=

Then, the objective function (8) -employed in problem
(7)- is modified by replacing the weight y; with the
switching variables S (k) for each model and including
them in the design constrains g,(-) and g,(-), which
represent the output and input constraints respectively

F= isl (k) f, (r(k +1),y,G. k), u, (i, k)) i €[0,V],(17a)

g, (8,(0), v, k), G, 5)) < 0
£, (8,(k), y, i), i,K)) <O.

1€[1,m], (17b)

Finally, the structure of predictive feedback controller
must be modified by including the vector of switching
variables

Sk) =[8,(k)-+- S, (k)]

as external inputs of optimizer (Fig. 3). In this way,
the control law (1) is designed for problem (7) but
with objective function and constraints (17). It will
employ only the closest model to the current plant
dynamic to measure the performance and evaluate the
constraints while the stability constraint will be
applied to all models. Then, a better closed-loop
performance will be obtained because only the closest
model to the current dynamic is used to evaluate the
controller performance and constraints during the
controller design.

The controller is computed such that all the closed-
loop systems resulting from the elements of W are
superstable at each sampling time. This is a sufficient
condition to guarantee the stability of the switching
sequence. This result is summarized in the following
theorem.
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Fig. 3. Structure of the controller.

Theorem 2: Given a system represented by a PLM
of m LTI models, W , and controlled by the predictive

controller (1) designed by problem (7) with objective
function and constraints given by (17), the resulting
closed loop system is exponentially stable for any
switching sequence.

Proof: To guarantee the stability of closed loop
system for any switching sequence it is necessary to
probe the stability of the PLM for any switching
sequence, which implies the stability of the nonlinear
system over the domain O [28].

Since the optimization problem (7) guarantee the
superstability of all closed-loop systems resulting
from of the PLM W, it follows from Lemma 4 that
the superstability of each individual model of W,
implies the superstability PLM itself. From Lemma 2
follows that the error trajectory will monotonically
decrease in norm for all futures samples

||e(k+j)||m < 0'(k+j)max(0,

e(k), —nk+j)) Vj>0,

where
otk+ =T 3" S, tk+ia, j>0,

m (18)
nk+)=3"" S,(k+j)m.
Since the error converges monotonically to zero for
any switching sequence, the resulting closed-loop for
the PLM system is stable.

Finally, by construction of the PLM model [28], all
trajectories of the nonlinear system are included in the
set of the PLMs trajectories. Thus, the stability of the
PLMs switching sequence over O implies the
stability of the nonlinear system switching sequence
over D . 0

The superstability of the PLM implies the existence
of a common unbounded Lyapunov function®

% The FIR model is a non minimum state space realization of
the system whose states are the previous control actions

Vi(k)= max |u(k—j)| 1=1,...,m, (19)
J=0,..,N

which is properly nested for at least N samples
Vikyc---cV(k+N)cV(k+N+1) g -+

The common Lyapunov function for the PLM W
will exist as long as the optimization problem has a
solution and it will be decreasing along all trajectories.

3.1. Robust adaptive switched control

Standard switching control schemes are based on
the certainty equivalence philosophy [16,29]. At each
switching time, the supervisor selects the candidate
controller that is better tuned to the currently
estimated system model. The compromise between
robustness and performance is made off line when the
controller cover is designed [16,17].

An alternative approach to robustness problem has
been proposed by Campi et al. [29], who suggested a
hierarchical switching scheme based on a probability
measure of the likelihood of the different models. The
probability measure is estimated on-line from the data
obtained by the control system. It is employed to
select a controller that suitably compromises
robustness versus performance, given the current level
of uncertainty. As time goes by, the probability
distribution becomes more sharply peaked around the
model that best describes the system.

In the switching and tuning framework presented in
this work, the robustness can be obtained using a
subset of models which lays into a distance 8(k) to the
current system dynamic

M (k)={Gp,(2)/Al,(k)<S(k) 1=1,..,m} (20)

instead of the closest model (Fig. 4) to design the
control law. In this way, the control algorithm will
build an g-accurate model [28] every sample to
approximate the nonlinear model, which will be used
by the optimization problem (7) to design the control
law. This idea will be implemented by modifying the
switching function (16) in the following way

Current plant O

M )

Y
LGy P
\’5"/ Gpm-l

ATl

Fig. 4. Geometrical interpretation of index (20).
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o ={§ 720
where
8(ky=p min (I,(k)~1,(k)) p=1,
2 (22)

1,(k)=1,,(k) = min (1,(k)),

and modifying the optimization problem (7) in two

ways:

1. The switching variables S(k) are included into
stability constraints (7e)

SO(Z ] +(Z) s
(ZL Aj,—izj‘—aj(k))g:o'qjl)<1 I=1,...0m

2. The prediction time J will be computed at each
sampling time using (6) such that only stabilizes
the models involved in the control law design.

The modification of the switching rule implies the on-

line building of an e-accurate model’, whose accuracy

is defined by 8(k) and p

elk) = p(gm (k)+ 5(k)) ,

h|—

qj+v
(23)

and characterizes the region of the operational space

O employed to design the control law (Fig. 4). In this
way, these parameters define the number of models to
be included in M (k) at each sample.

In the first samples after a change, several models
can have similar behavior and it is difficult to
distinguish between them. Therefore, the set M (k)
will include more models than required to represent
the system, providing closed-loop robustness
according to the information available at each
sampling time. As the time goes by, the indexes (k)
I=1,...,m will clearly differentiate and the set M (k)
will reduce the size (Fig. 5) until only the models
required to represent the system with the desire
accuracy will belong to M (k). At least, it will
include the two closest models to the current dynamic.
In this way, the control law superstabilize the actual
system’s operating region, and their neighborhoods.
As the time goes, the control law will change as the
stabilization region is moving through the operating
regions until the steady-state would be achieved. This
is equivalent to a dynamical partition of the operating

? The minimum accuracy of the adaptive scheme is given by
the accuracy of the PLM, which depends on the number of
models m. Assuming that the regimes at uniformly
distributed over the operating space £ , an upper bound of
the number of models m), required to have an accuracy € was
obtained by Angelis [28, chap. 4 pp. 36].

M (&)
M (k+1)

M (I.c+j)

M (k+nN)
Fig. 5. Time evolution of model subset M(k).

region during the controller design, which is carried
out during the model selection trough the switching
rule.

Using similar arguments to Theorem 2, but applied
to g-accurate model resulting from the switching rule
(21)-(22), the set M (k), the stability of the closed-
loop system for any switching sequence can be
guaranteed using the properties of superstable systems.
This result is summarized in the following theorem.

Theorem 3: Given a nonlinear system represented
by a set of modelsW and controlled by the control
law (1) designed by problem (7) with the switching
rule (21)-(22), the resulting closed loop system is
exponentially stable for any switching sequence.

Proof: The superstability of the models included
in M (k+j) j>0 implies that the error trajectories
of the resulting e-accurate model will be
monotonically decreasing in norm for all future
samples

etk + ), < otk~+ jymax(0,

ek, —nk+))) >0,

where o(ktj) and n(k+j) are give by (18). Since the
error trajectories of the g—accurate model converge
monotonically to zero for any switching sequence, the
resulting closed loop is exponentially stable.

Finally, for ¢ small enough, the stability of the &
accurate implies the stability of the nonlinear dynamic
over O [28]. O

Under this condition, a set of nested positively
invariant sets and piece-wise Lyapunov functions

Ck+j+D)c Ck+)) Vj>0,
Vik+j+DcVk+))

will exists, and the system trajectory will be confined
to increasingly smaller regions, where the associated
controller will be designed leading to control loops
with response times that decrease, regulation proceeds
much faster than if a single controller only were
employed.
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4. SIMULATIONS AND RESULTS

Consider the problem of controlling a continuously
stirred tank reactor (CSTR) in which an irreversible
exothermic reaction is carried out at constant volume.
This is a nonlinear system originally used by
Morningred et al. [13] for testing predictive control
algorithms. The objective is to control the output
concentration Ca(r) using the coolant flow rate gc(¢)
as the manipulated variable. The reactor has a second
output, the temperature of the reactor 7(¢). The inlet
coolant temperature 7co(f) (measurable) and the feed
concentration Cap(f) (non-measurable) represent the
disturbances. The output concentration Ca(f) has a
measured time delay of 7,~=0.5 min. The nonlinear
nature of the system is shown in Fig. 6, where the
open-loop response to changes in the manipulated
variable is shown.

Fig. 6 shows the dynamic responses to the
following sequence of changes in the manipulated
variable g(f): +10 Itmin~', —10 Itmin™', =10 ltmin™" the
reactor control is quite difficult due to the change in
the dynamics from one operational condition to
another and the presence of zeros near the imaginary
axis. Besides, the CSTR becomes uncontrollable when
g(f) goes to beyond 113 Itmin ™.

We have chosen as operating space region the cube
specified by

|Ca(t)—0.085| =0.045 mol I™", |T(1)—-440|=7.5"K,
[gc(£)-10[=5Irmin"'.

It is possible [28, chap. 4 pp. 36] to approximate the
nonlinear model of the reactor within the specified
working space, using m=4 linear models, leading to an
estimate error £e=0.007. Using subspace identification
techniques four discrete linear models for can be
determined from the composition responses shown in
Fig. 6. Notice that those changes imply three different
operating points corresponding to the following
stationary manipulated flow-rates: 100 Irmin~', 110
ltmin’l, and 90 Itmin'. As in Morningred’s work, the
sampling time period was fixed at 0.1 min, which

Tenperature [ “K ]

e
k]
8
€
8
8
0 10 20 30 40 50
Time [ min ]

Fig. 6. Open-loop response of the CSTR.

Table 1. Vertices of polytopic model.

Operating conditions Model
Model 1 0.186 107z
qc=100, Agc =10 2> ~1.894z+0.941
Model 2 0216 107z~
ge=110, Agc=-10 2> ~1.727z+0.779
Model 3 0.115 10727
gc=100, Age =-10 22 ~1.710z+0.755
Model 4 0.831 10727
qc=90, Agc =10 22 ~1.792z+0.824

gives about four sampled-data points in the dominant
time constant when the reactor is operating in the high
concentration region.

Table 1 shows the four process transfer functions
obtained. They define the polytopic linear model
associated with the nonlinear behavior in the
operating region being considered. They should be
associated to the m vertex models in the above
problem formulation.

The controller must be able to follow the reference
and reject the disturbances present in this system
having a settling time of 5 min for an error of 2%.

w(k)<1.02r, VEk>N,, o4

|e(k)|<0.027, Vk>N,+50. @4)
where #y is the reference value and N, is the time of
change. Besides, a zero-offset steady-state response is
demanded for the steady-state controller

2 (K)=1 Vk> N, +50. 25)

To guarantee the system controllability over the
whole operational region a hard constraint is
physically used on the coolant flow rate at 110 /tmin™.
Therefore, an additional restriction for the more
sensitive model (Model 1 in Table 1) must be
considered for the deviation variable u(k)

u(k)<10 Vk>N,. (26)

This assumes that the nominal absolute value for the
manipulated variable is around 100 /tmin™' and the
operation is kept inside the polytope whosz vertices
are defined by the linear models. The constraints (24)-
(26) are then included in the optimization problem (7).

Now, define the parameters of the predictive
feedback control law. The orders of the controller's
polynomials are adopted arbitrarily such that the
resulting controllers include the predictive version of
popular PID controller (v=1 and w=2). The controller
predictor P (J,z™') was built using the nonlinear
model of the reactor. The prediction time J is chosen
such that it guarantees the closed-loop stebility for
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Table 2. Prediction time for each region.
Model 1 | Model 2 | Model 3 | Model 4
J 12 11 9 10

each model. They were chosen such that they satisfy

alj>2hl|h§| I=1,...m 27

The results are summarized in Table 2, where the
prediction time for each model is shown.

The objective function employed to measure the
closed-loop performance for each model of W s

5= Ge+ik)+OAu (k+i) 1=1,2,3,4,(28)

where the time span is defined by V=150 and the
control weight 6 was fixed in a value such that the
control energy has a similar effect than errors in the
tuning process (=107 /=1, 2, 3, 4).

In these simulations the robust switching scheme
with time-varying radius is employed. It uses the
reactor temperature 7(k) as decision variable because
it has no time delay. It is implemented using the index
(11) with the parameters given by

a,=06,8=04 [=1,2,34.

To make more efficient the calculation of the indexes,
the term corresponding to the moving average part of
the index is implemented in a recursive way

Z,(ky = A (k)& (k) +(1= 4(k)) Z,(k —1) Z,(N,) = 0.

Since the environment where the system operate is
non stationary, a variable forgetting factor A,(k) [30] is
employed for each index, whose values are limited

0<A4, <1 1=12,34.

The parameter p is set to 1.5 to increase the
robustness of the system during the initial samples of
the transitions between models and have a good
transient response.

Finally, the optimization of the control law will be
stopped when the system has achieved its settling time

le(i)|<0.02r,  i=kk-1...k-5,

| Au(i)|<0.5.

(29)

The multiple models and switching (MMS)
controller was designed following the procedure
proposed by Rantzer and Johansson [31]. The state
space was divided in four regions or cells, with model
1 effective in cell 1 (Ca>0.09 and ACa>0), model 2
effective in cell 2 (Ca=0.09 and ACa<0), model 3
effective in cell 3 (Ca<0.09 and ACa<0) and model 4
effective in cell 4 (Ca<0.09 and ACa>0). A piecewise-
quadratic Lyapunov function (PQLF) of form

V(x)= {xTP,x incell! 1=1,2,3,4

is sought, where matrices P; are parameterized so as to
ensure that the function is continuous across the
boundaries. Namely, following Johanson and Rantzer
[32] the matrices P; are parameterized as

P =FTF,

where the matrix 7 is to be determined and Fix=Fx [#/
on the shared cells boundaries. Note that these
matrices are not uniquely determined by the partition.
This formulation relaxes the requirement of a
common quadratic Lyapunov function in two ways.
Firstly, we do not require a single positive-definite
matrix P to simultaneously satisty

AT P+PA4 <0 [=1,2,3,4.

Secondly, when implementing the search for such a
function as a system of LMI, xT(A,TP+PA,)x is not
required to be negative for all non-zero x but only for
those x in the cell i where the dynamics are given by
the system matrix 4;. The problem of finding a PQLF
for the system was formulated as a feasible problem
for a system of LMIs and solved numerically [32].
The switching rule employed by this controller is
similar to that one that is used by the adaptive
predictive controller.

A robust MPC based on the worst-case
minimization was developed to compare the closed-
loop responses. The predictor was built using the
model 2 assuming that the parameters are corrupted
by some error &; i=0, 1, ..., p due to modelling error,
i.e., a=aptE; i=0,1,...,p, such that a;c[ap—E;, ant&].
The uncertainty bound &; was calculated form the
vertex of the polytopic models

¢ =jrn=l%§(|aji —azl.I) i=1...,p.
The error for the remaining parameters of the model
has been computed in a similar way. Here it is
assumed that the parameters’ error is an independently
identical uniform distributed variable. The remaining
tuning parameters (the optimization horizon N, the
control horizon Ny, control weight R, and the error
weight Q) were set to

N =200,N,=5R=510"1,0=1.

The optimization problem was solved, at each step,
using a min-max algorithm.

The simulation tests are similar to Morningred’s
work and consist of a sequence of step changes in the
reference signal. The set point was changed in
intervals of 10 min. from 0.09 mollf ' to 0.125, returns
to 0.09, then steps to 0.055 and returns to 0.09 mollr .
Fig. 7 shows the results obtained when comparing the
adaptive predictive controller with a standard MMS
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Fig. 7. Closed-loop responses to changes in setpoint.

and a robust MPC. The superior performance of the
adaptive predictive controller proposed in this work is
due to the combination of a switching scheme with the
on-line design of the controller. In this way, the
adaptive predictive controller is able to identify the
local model and to optimize the closed-loop response
whilst at the same time satisfying the constraints by
modifying the controller’s parameters (Fig. 9(a)).

The parameters of the adaptive controller are
modified with changes in the reactor’s operating
region. They revealed an initial transient behavior,
after each change, before achieving their steady state
values (Fig. 9(a)). The major changes happen during
the transitions from and to model 1 because the
behavior of this model is different to others (see Fig.
6). This fact can be appreciated in the behavior of the
switching variables, which show jitter during the first,
third and fourth reference changes. These transitions
correspond to changes to and from models 2, 3, and 4;
which have similar dynamics and only differ in the
gain.

The MMS shows a similar performance to the
adaptive  predictive  controller; however the
manipulated variable generated by the switching
controller reveals bumps (Fig. 8) due to the switch
between the different controllers. In this application,
the bumps on the manipulated variable do not affect
the output due to the high speed dynamics of the
system.

110 T T T T

o
a

100

95 —— Adaptive predictive

Coolant flowrate [ /t min™ ]

=== MMS
---------- Robust MPC
90 - B
85 1 L 1 1
0 10 20 30 40 50

Time [ min ]

Fig. 8. Coolant flow rate inputs to setpoint changes.
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Fig. 9. Controller parameter sequence (upper figure)

and  switching-indices  (lower figure)
sequences.
5. CONCLUSIONS

A simple framework for the design of a robust
predictive feedback controller with multiple models
was presented. The approach was to relate the control
law performance to the prediction of performance.
The resulting controller identifies, at each sample, the
closest linear model to the actual operational point of
the controlled system, and reconfigures the control
law so that it ensures robust stability of the closed-
loop system. The reconfiguration of the controller is
carried out by switching the function used to measure
the closed-loop performance and the constraints.

The results obtained by simulating a continuously
stirred tank reactor with significant non-linearities
illustrate the effectiveness of the proposed controller.

APPENDIX A: ROBUST STABILITY
CONDITION
Using the open-loop predictor (3) and the FIR
representation of the system, the characteristic closed-
loop equation with the predictive feedback controller
(1) is given by

T(z")=1+ iqnﬂ,z’" +a Jz‘liqnz_" + iqﬂz’" i /’;,.zj -
n=1 n=0 n=0

i=J+1

v N v 0
+>.q,27" Z(hi —le.)z"i +2.,27" > b
n=0 i=1 n=0 i=N+1 :
The stability of the closed-loop system depends on
both: the prediction time J and the controller
parameters (g, n=0,...,v+w). It may be tested by any
usual stability criteria. First, the following lemma is
introduced.
Lemma 1: If the polynomial T (z’l)zzzzotiz"'
has the property that
inf

|z’ﬂ

T(z‘1)| >0, (30)

then the related closed-loop system will be
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asymptotically stable {21].
Applying Lemma 1 to characteristic closed-loop
equation we have

|T(Z_l)l 2 1 - i qn+vZ_n‘ —EIJ i qnzinil - i i qn i‘ll-ZJ—i‘n
n=l n=0 n=0i=J+1
_ii q, (hx _iii )Z—i—n _Zv: i qnhiz—i—n i
n=0 i=1 =0 i=N+1

The worst case happens when z=1, thus the closed-
loop will be stable if

v

>

I_Z qn+v _&JZ qn _an ];tl
n=1 n=0 n=0 i=J+1
v N ~ v w© (31)
_Z qn Z‘hl_hl’_z qn |hl|>0’
n=0 i=1 n=0 i=N+1
which is equivalent to
1- w_l Doy ~ ul 7 ud 7 -
= PO TR 3 AR N R A SR TANE )
i=| i=

2ol

The closed-loop stability depends on both parameters:
the prediction time J and the controller parameters g,
n=0,1,...,v+w. So, for the controller design the
prediction time J is fixed and then he parameters are
tuned.

If the controller denominator verifies

2.
n=1

the stability condition (32) becomes
N N - N - 0
a> Y |+ | -hl+ X ) (34)
i=J+1 i=1 i=N+1

This is condition was derived by Giovanini [19] for
the predictive feedback controller. This equation mean
that the prediction time J and controller parameters ¢,
n=0,1,...,v+w could be independently fixing. The
same result is obtained if v=1 and ¢,+,=—1.

i i=J+l N+l

v =1 (33)

APPENDIX B: PROPERTIES OF SUPER-
STABLE SYSTEMS
Consider the local approximation to a system model
is given by the discrete model
x(k+1) = Ax(k) + Bulk), x(0)=x,,

35
(k) = Cx(h), 33

where x(k)eR", AcR™, BeR"" and the o« norm for
the vector and matrices are given by

)[4, =max >

Definition 1: The system (35) is superstable

||x(k)||oo = max( x,(k)

ie[l,n]

o)

if 4], <1.

This is a sufficient condition introduced by some
[20-22] for different linear models (polynomials, FIR
and state space) and it was later applied to control
problems by several authors [5,22-24].

Superstable systems enjoy numerous important
properties [24], for this work the most relevant are:

Lemma 2: Superstability implies the existence of a
positively invariant set.

Proof: Given a sequence of bounded amplitude
inputs, the system states are given by

x(k+j) S APx(k)+ D A7 Bulk+ j—i). (36)

If the input sequence is bounded, u(k)||® <1Vj>0,

the norm of the states is given by

[xte+ A, <42 xl, + 2] 410 8], >0
x(k), -7),

where &= [4], and 7 =[B]_ /1-o.
This estimate (37) implies that the norm of the
system states decreases monotonically*

(), -n)viz0, (38)

and for any state that satisfied |[x(k)|, <7, the system
states will be bounded by

37

<n+o’ max(O,

| Ax(k+ ), < o’ max(0,|

|x(k+ )|, <n Vj>0, 39)

consequently, the cube

C={xeR":

[, <n}

is a positively invariant set. O
Lemma 3: Superstability implies the existence of a
non quadratic Lyapunov function.
Proof: From (38) is clear that the system states
monotonically decrease at the rate

e+ L, <142 (xR, ~n) v >0, (40)

when the states are outside of the invariant set
C, Vx(k):" x(k)||w>77.

For the particular case of a system without
inputs, u(k) =0, the states will be bounded by

|axe+ ), <[ 4] | =, (41)

It follows from this equation that superstable systems
has the nonquadratic Lyapunov function

V(x(k)) =] ), - (42)

* This property can be extended to inputs with outliers
|lx®[s<1 YEzN, |xV)||> 1.
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This function grows linearly in any direction,

V(Ax)=AV(x) VxeR",YA20, anditis piecewise-
linear and non differentiable, however it has lateral
derivatives. At the same time, it has also the properties
of the conventional Lyapunov function: ¥(x)>0, ¥(x)
=0 for x=0, it is convex and grows to infinity.

These resuits can be easily extended to time varying
systems, as well in the presence of time varying and
nonlinear perturbations. In this case, the following
condition must satisfied for all £

[4k), <7 <1,

43
£ (e, )| < s+ v (i) )

O<v<l-r,

which lead to the results showing in (37)-(42) with

parameter 1 and ¢ given by

n=-t—. (44)

o=r+v, "
-0

The proof follows literally the same lines as of
Lemma 2 and 3.

Lemma 4: The superstability of systems employed
to build a polytopic linear model implies the
superstability of time varying system and the
existence of a common Lyapunov function.

Proof: Given a polytopic linear model [28]

x(k+1)=D"" @,(2)(Ax(k)+ Bu(k)),
y(k) = Cx(k),
where @/(z(k)) I=1,...,m are scheduling functions
w,(2(k)20 Y(u,2)eD,l=1,...,m,
S o (2(k))=1 Vk

and z(k) is a general scheduling variable [28]. The
superstability of individual systems

|4]. <t =1,...m
implies the superstability of the time varying system
[0, =| X0 @4 <37 o) 4], <1
Since each system (4, B)) I=1,...,m is superstable they

admit a Lyapunov function V;(x)=||x||00 =1,....m,
such that

V) =| 3 @@ 4x0] <37 0], ),
=3 0|4l

<a|x(e),
and a positively invariant set

C= { XeR": |le0 <n(k) } k) = Z;":] o (2. O
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