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ABSTRACT-A new on-line fault detection and isolation (FDI) scheme has been proposed for engines using an adaptive
neural network classifier; this paper investigates the robustness of this scheme by evaluating in a wide range of operational
modes. The neural classifier is made adaptive to cope with the significant parameter uncertainty, disturbances, and
environmental changes. The developed scheme is capable of diagnosing faults in the on-line mode and can be directly
implemented in an on-board diagnosis system (hardware). The robustness of the FDI for the closed-loop system with
crankshaft speed feedback is investigated by testing it for a wide range of operational modes, including robustness against
fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all changes occurring
simultaneously. The evaluations are performed using a mean value engine model (MVEM), which is a widely used
benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the
proposed method for various uncertainties and disturbances.
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NOMENCLATURE

t : time (sec)

o : throttle plate angle (degrees)

n : engine speed (rpm/1000)

m,  :engine port fuel mass flow (Kg/sec)

T, : ambient temperature (Kelvin)

Di : absolute manifold pressure (bar)

T, : intake manifold temperature (Kelvin)

m,, : air mass flow past throttle plate (Kg/sec)

Teex  : EGR temperature (Kelvin)

m,, :air mass flow into intake port (Kg/sec)

mrer - EGR mass flow (Kg/sec)

V, : manifold + port passage volume (m)

R : gas constant=287x10"° kl/kg/K

K : ratio of specific heats = 1.4 for air

I : crankshaft load inertia (kg m?)

P; : friction power (kW)

P, : load power (kW)

A : Relative value to indicate the air/fuel ratio (A=1
corresponds to air/fuel ratio of 14.7)

P, : pumping power (kW)

H : fuel lower heating valve (kJ/kg)

A7, :injection torque delay time (sec)

*Corresponding author. e-mail: d.yu@ljmu.ac.uk

1. INTRODUCTION

An automotive engine is a complex machine that is
controlled and monitored by a sophisticated electronic
system called the electronic control unit (ECU). The need
of an advanced ECU arose due to legislative require-
ments for pollution control. All petrol cars sold within
Europe since January 1, 2001, and diesel cars manu-
factured from 2003, must have on-board diagnostic
systems to monitor engine emissions. These systems
were introduced in line with European Directive 98/69/
EC (Official Journal of the European Communities,
1998) to monitor and reduce emissions from cars. All
such cars must also have a standard European On-Board
Diagnostics (EOBD) socket that provides access to this
system. EOBD systems monitor and store information
from sensors throughout the car, e.g., air flow sensors and
oxygen sensors. Sensor values outside an acceptable
range trigger a Diagnostic Trouble Code (DTC). New
diagnostic tools help in reading and interpreting these
codes; and view the live sensor output. EOBD is the
European equivalent of the American On-Board Diagno-
stics - II (OBD-II) standard which applies to cars sold in
the United States from 1996.

Some engine faults can lead to an increase in
emissions and adversely affect fuel efficiency. Some
serious faults can even lead to the ceasing of an engine or
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even an accident. That is why fault detection, isolation,
and accommodation have become so important for the
automotive industry. There are a number of fault
diagnosis systems in practice but major car firms are now
looking at neural networks to solve the demanding engine
control and diagnostic requirements (Evans-Pughe, 2006).
For instance Ford has introduced the Econoline van,
which uses a neural net to detect misfire in its V10
engine. Applications of artificial neural networks (ANNs)
to engine modelling and control have previously been
presented by many authors (Tan and Saif, 2000; Kimmich
et al., 2005; Manzie et al., 2001; Jakubek and Strasser,
2002). Earlier work on fault diagnosis of an automotive
engine based on parity equations derived from an engine
model was presented by Gertler (Gertler et al., 1993).
The application of a data-driven monitoring technique to
accurately diagnose air leakage in the inlet manifold
plenum chamber of an automotive engine with a diameter
size as small as 2 mm can be found in (Antory, 2007). A
hardware-in-the-loop simulation (HILS) system was
developed and performance of a commercial Electronic
Stability Program (ESP) Electronic Control Unit (ECU)
was evaluated for a virtual vehicle under various driving
conditions (Lee et al., 2007). This HILS system can be
used in various applications such as benchmarking, com-
parison of commercial ECUs, and detection of fault and
malfunction of ESP ECUs. A Kohonen network-based
fault diagnosis system for fault diagnosis and monitoring
of starter motors was proposed (Bay and Bayir, 2005) for
the fault diagnosis of six different faults in starter motors
which made it possible to diagnose the faults before they
occurred by keeping fault records of past occurrences.
The effectiveness of a non-linear PCA-based monitoring
scheme was illustrated for the drifting fault in the fuel
flow sensor due to a partial blockage of the intercooler in
a Volkswagen TDI 1.9 litre diesel engine (Antory et al.,
2005). The pattern recognition and classification abilities
of networks were applied to crankshaft speed fluctuation
data for engine-fault diagnosis, and multidimensional
mapping capabilities were investigated as an alternative
to large lookup-tables and calibration functions (Shayler
et al., 2000). A continuous wavelet transform technique
for the fault signal diagnosis in an IC engine and its
cooling system was presented in (Wu and Chen, 2006). A
neural network model-based fault classification system
for a non-linear dynamic process was investigated (Yu
and Gomm, 2003) and the real data experiment showed
that sensor faults could be detected and isolated even
without a mathematical model process. An FDI scheme
for abrupt and incipient faults presented (Zhang et al.,
2002) using online estimators is a good example of an
automated fault-diagnosis methodology.

In this paper, two components and two sensor faults
with four different levels of intensities have been investi-

gated as four typical and practical examples of SI engine
faults. The faults considered are realistic and have been
considered by previous authors (Nyberg and Stutte, 2004;
Capriglione et al., 2003). The two component faults are
exhaust gas recycle (EGR) valve stoppage and gas
leakage in the intake manifold. The two sensor faults are
intake manifold pressure and temperature sensor faults.

In this paper, a new on-line FDI scheme proposed for

~engines using an adaptive neural network classifier

(Sangha er al., 2006) is thoroughly tested for a wide
range of operational modes to check robustness of the
proposed scheme. The classifier system is adaptive to
cope with the significant parameter uncertainty, disturbance,
and environment change. It is capable of on-line fault
diagnosis which can be directly implemented in an on-
board diagnosis system (hardware). During operation, the
network classifier learns parameter changes in the engine
due to aging or environmental change. It can also adapt to
engine-to-engine differences within a batch of products.
Gaussian radial basis function (RBF) neural nets are used
for this purpose and both weights and widths are adapted
on-line. Every sample of engine data is first tested for a
fault and then used to update the neural network. The
proposed approach is applied to diagnose some simulated
faults in an ST engine air path. It is impracticable for the
authors to get real faulty data from a running engine at a
specific time and situation. Therefore, an engine simu-
lation model is used for fault simulation. The adaptive
algorithm is also compared with a non-adaptive algorithm.
Furthermore, the robustness of the developed adaptive
system is investigated by testing it for a wide range of
operational modes for a real automotive engine running
on road viz. change in speed set-point, load, and the
engine parameter. The nobility of this paper consists in
the successful demonstration of robustness of the developed
adaptive neural network-based FDI algorithm.

The developed fault diagnosis scheme directly contri-
butes in improving the engine performance. A fast and
reliable fault diagnosis would result in a quick realization
of the problem. For example, a gas leakage in the mani-
fold would lead to increased air pollution and degraded
engine performance. Detection of faults in time can also
prevent possible catastrophe from developing further.
Similarly, the EGR valve fault will adversely affect the
engine performance. If the EGR valve is clogged, the
engine performance will go down and an early detection
of the fault is required for engine maintenance and repair.
Some sensor faults that are used for feedback control will
affect both dynamic and steady-state performance.

2. FAULT DIAGNOSIS METHOD

According to the engine air path dynamics, four variables
are chosen as the network inputs: the throttle angle, the
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Figure 1. Information flow of the fault diagnosis.

manifold pressure, the manifold temperature, and the
crankshaft speed. The RBF network, as the fault classi-
fier, will receive all possible and relevant signals contain-
ing fault information, and has 17 outputs each indicating
one of the investigated states: one for no-fault and 16 for
16 faults. The information flow for the fault diagnosis is
illustrated in Figure 1.

The feedback system in a real automotive is a human
element (the driver). The speed is attempted to be kept
constant by adjusting the throttle angle. In the model, the
human controller is represented by a PID controller. The
mean value engine model (MVEM) receives a controlled
throttle angle input. Component faults are simulated in
the model one by one and an appropriate level of
measurement noise is added to all input and output
measurements. All four inputs and outputs are condition-
ed, normalised, and fed to the adaptive classifier. Widths
in the hidden nodes and the weights in the output layer of
the RBF network are adapted to minimise the sum
squared error between the output from the adaptive
system and the pre-decided target output. The gradient
Descent method is used for the widths of the RBF
network. The width in each hidden layer node is usually
chosen as a constant using the P-nearest rule. The classi-
fication is sensitive to the Gaussian local function, which
is mainly characterised by the width. Therefore, a gradi-
ent descent algorithm is derived to be on-line to adapt the
widths to achieve a minimal objective function given as
follows:

q
=Y ¢, 1)
j=1

where e;=y—; is the j* classifier output error; and y; is
the /" training target. The new updated value of the width
can be achieved by the following equation:

pilk + D)=p(k)+4.a. ¢, (k)X

k)—c i 2
pi(k)
where x(k) is the network input vector at iteration k, c; is

the centre of the i® activation function, ¢.(k) is the
Gaussian basis activation function, wy(k) is the output

. e(kywy(k) (2)

Neural Classifier

layer weight element connecting the j* hidden node to the
" output, « is a learning factor with 0 < o< 1. The
complete mathematical derivation of the above equation
can be found in (Sangha et al., 2006)

While the fault classifier diagnoses faults on-board, the
classifier is adapted on-line so that the model-plant
mismatch, parameter uncertainty and especially the time
varying dynamics caused by mechanical wear of compo-
nents and environment change can be modelled. In this
way the classification error and consequently the false
alarms will be greatly reduced. Here the false alarm is the
alarm caused due to noise, parameter uncertainty, or time
varying dynamics when actually there is no fault. The on- .
line adapted classifier is developed to cope with such
situations, which are not considered by the fixed para-
meter classifier.

The fault classification and on-line adaptation are
implemented as follows. First, the measurements are read
into the electronic control unit (ECU). Then, the data is
fed into the classifier to diagnose faults. After this, the
target will be modified according to whether a fault or
several faults are detected. If a fault is detected, the on-
line training target vector will be changed to the target
vector corresponding to the occurred fault. Then, the
measurements and the modified target are used to update
the classifier. In the adaptation, the width in each hidden
node is adapted using the gradient descent algorithm in
(2) and the centre locations remain fixed as previously
described. This is followed by adaptation of the weights
using the recursive least squares (RLS) algorithm (Ljung,
1999).

To reduce the effect of peak noise on the fault detec-
tion so as to reduce the false alarm, the mean absolute
modelling error for each classifier output is calculated for
the previous M samples as the residual,

e 2 nD-50)

i=k—-M+1

» J=1 g 3

and a fault is believed to be fired when

K2 C))
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Figure 2. Flow chart of fault diagnosis and classifier
updating.

where k is the sample instant, 7, is the residual and r, is the
threshold to be designed according to the noise level.
Another point is that a multi-epoch training of the width
in one sample period using the gradient descent method is
employed. It was found that a single iteration updating
with the gradient descent method would not reach the
minimum if the learning rate is chosen small, while a
large learning rate will cause unstable convergence.

The recursive updating of the widths runs until the
following is satisfied,

9 <
ap.~
where o is a pre-specified small positive constant, /6r‘a‘
pre-specified number of iterations is reached. The fault
diagnosis and classifier adaptation within one ‘$éample
period is illustrated in Figure 2. ;

=1, =, m, ®

3. ENGINE DYNAMICS AND CONTROLLER
DESIGN

3.1. Mean Value Engine Model
A mean value engine model (MVEM) is chosen for fault
simulation as well as testing. A speed feedback loop
along with a PID controller is added to the MVEM in this
research as shown in Figure 3. In a real automotive the
speed feedback control and accordingly the manipulated
variable, throttle angle, is given by a human element
(driver). Here however, the fault detection and evaluation
are done when the engine is under closed-loop speed
control to simulate the real world situation. The modified
MVEM has reference speed as the input and four outputs:
throttle position, intake manifold temperature, intake
manifold pressure, and crank shaft speed, respectively.
To investigate the feasibility of the developed method
under closed-loop speed control, the dynamics of the
modified and controlled MVEM is introduced. It consists
of three sub-models that describe the intake manifold
dynamics including air mass flow, pressure and temper-
ature and the crankshaft speed. The engine dynamics are
explained briefly in the following sections.

3.2. Manifold Filling Dynamics
The engine air path is schematically illustrated in Figure
4. Its dynamics are briefly presented as follows and the
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Figure 3. Simulink model of MVEM with crankshaft speed feedback.



ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT 641

EGR

Valve
Tem perature e
Sensor

Throttie CVYE'""‘I‘;?
Plate s inlet o — N\
/, Manifold s e //

b .:_,.w Exhaust
B Cylinder \ W‘
,,,,,, e L _—

/
Pressure """
Sensor

Leakage Piston

Figure 4. Schematic of the air intake and exhaust system
of the engine.

physical parameters are defined in the nomenclature. The
details of the dynamics can be referred to in (Handricks et
al., 2000).

The manifold filling dynamics in reality is based on an
adiabatic operation rather than an isothermal one. The
manifold pressure can be represented as

KR, . . .
PF"";(‘ mapTi + My T, + MecrTrcr) 6)

where the dot on the top of a variable, such as p;, denotes
the first derivative of the variable with respect to time.
The positive terms within the brackets show the in-flow
of gas and the negative term shows the outflow of gas
from the intake manifold (Figure 4). Using the law of
energy conservation, a state equation which describes the
time development of the intake manifold temperature can
be given as,

N T: . . .
i=I’feV; [ titep( K= )T, + ritae KT=T,) + ttecn( KT =101 (7)

3.3. Crank Shaft Speed Dynamics
Applying the law of conservation of rotational energy, the
crankshaft dynamics of an SI engine MVEM are descri-
bed by equation (8).
Pf(p/7n)+P1J(p15n)+Pb(n)+ H177:(Puﬂ ﬂ)mf(l — ATd)
®)

Where I is the scaled moment of inertia of the engine and
its load and the mean injection/torque time delay have
been taken into account with variable Az, A=1 corre-
sponds to the air/fuel ratio (AFR) of 14.7 for gasoline and
14.5 for diesel. At A=1 we have stoichiometry or the
point at which the most complete combustion takes place.
A gives a measure of AFR, which is independent of the
type of fuel being used. 4> 1.0 indicates excess air (lean
mixture), while A< 1.0 indicates excess fuel (rich mix-
ture).

3.4. Controller Design

A simple closed-loop PID controller is shown in Figure
5. The variable ‘¢’ represents the tracking error, the
difference between the desired input value (reference
signal) ‘R’, and the actual output ‘Y. This error signal ‘e’
is sent to the PID controller, and the controller computes
both the derivative and the integral of this error signal.
The controller output signal ‘u’ is equal to the propor-
tional gain K, times the magnitude of the error plus the
integral gain K; times the integral of the error plus the
derivative gain K, times the derivative of the error,

w(t)=K,e(1)+K, Je(t)dt+Kd%Q
This signal ‘«’ is put into the MVEM, completing the
feedback loop fed back to the reference. The well known
Ziegler-Nichols method is used for tuning the PID
controller. Initially, K; and K, gains are set to zero. The
proportional gain is increased until it reaches the critical-
gain K, at which the output of the loop starts to oscillate.
K., and the oscillation period P, are used to set the gains as
K,=0.45*K. and K=12%K,/P. The desired output is
achieved without the use of the derivative gain. There-
fore, the derivative gain is kept zero to keep the controller
as simple as possible.

A set of five random values in the range of 2 to 4
KRPM are applied as reference signals. Each random
speed is sustained for 6 seconds before the speed signal is
changed to the next value because the outputs of the
simulation reach their steady state values in six seconds.
The data is sampled every 0.5 seconds. Therefore, 12
data points are collected in every six seconds of time. The
output response of the crankshaft speed for the no fault
case for five different reference signals is shown in
Figure 6. The output crankshaft speed follows the input
reference speed without much overshoot, delay time, and
zero steady-state error. The chosen PID (K,=10, K=10,
K,=0) settings give an acceptable level of performance of
the controller for further experimentation.

e P‘D u Y

MVEM
+ Controller

Figure 5. Closed-loop PID controller.

A
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Crankshaft speed

t (sec)

Figure 6. No fault outputs for five random speed
reference signals.
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4. FAULT DIAGNOSIS

4.1. Simulating Faults

The sensor faults can occur due to two reasons:

(1) Aging and wear & tear of the mechanical parts of the
deflection meter and

(i1) Electrical fault, e.g. short circuit or open circuit fault
in the signal cable.

The electrical faults are easy to detect because open
circuit and short circuit faults will cause a full deflection
or zero deflection in the meter, respectively. On the con-
trary, the aging and mechanical faults cause an incorrect
meter reading i.e. over- or under- reading of the actual
values. Both cases of under- and over- reading of the
temperature or pressure measurements are considered
here. Air leakage in the air path can happen due to the
following reasons:

(i) missing gas caps

(ii) loose gas caps

(iil) leaks in gas caps or vapour vent lines

(iv) disconnected purge lines (Reineman, 2000).
Current OBD regulations require monitoring of any leaks
(for the 2003 year model and after) that exceed 0.02
inches in diameter (0.5 mm approx). It is not practical to
create some component faults in a running engine in real
life, such as air leakage in the manifold or EGR valve
stoppage. Therefore the faults are simulated in a Matlab
engine model in this research. The air leakage is
simulated in the modified mean value engine model as a
percentage of the total air mass flow in the intake
manifold explained later. The EGR valve can be stuck up
in any position where there is a failure of the EGR valve
positioning control. This will lead to a fixed percentage
EGR flow through the valve. There can be many reasons
for failure of the EGR valve positioning system and
which have not been investigated in this paper. The
investigation is focused on the detection and isolation of
the fault and its intensity and not on pin-pointing the
actual component failure of the EGR system viz.

(1) EGR open circuit fault

(i1) EGR vent solenoid fault

(iii) EGR step motor 1 fault

(iv) EGR step motor 2 fault

(v) EGR vacuum regulator fault

(vi) EGR boost solenoid control fault etc.

Details of the simulation of the faults are described
ahead.

4.1.1. No fault

For the no fault situation, the EGR is assumed to be 1/6
(16.67%) of the total air mass flow in the intake mani-
fold. Practically, the EGR in a car can be as high as 20%
of the total air mass flow. It is also assumed that all the
sensors are working well and there is no leakage in the

intake manifold.

4.1.2. Air leakage fault
To collect the engine data subjected to the air leakage
fault, equation (6) is modified

PFI;_R(— mapTi + 1y, Ty + WigorTecr — Al) )]
where Al is used to simulate the leakage from the air
manifold, which is subtracted to increase the air outflow
from the intake manifold. The air leakage levels are
simulated as 5%, 10%, 15% and 20% of the total air
intake in the intake manifold, respectively.

4.1.3. EGR valve faults

The normal value of EGR is about 16.67% of the total air
mass flow, which is a realistic value of EGR feedback
chosen for the experiments. The value of ritger for
different fauit intensities is regulated as 0%, 25%, 50%,
75% and 100% of the total EGR air mass flow. Where
0% EGR air mass flow corresponds to the complete
stoppage of the EGR valve and 100% corresponds to full
EGR air mass flow, i.e. the no fault condition.

4.1.4. Temperature/Pressure sensor faults

Temperature and pressure sensor faults are considered in
four different intensities: Sensors over-reading 20% or
10% and sensors under-reading 10% or 20% of the
normal value. The faulty data for the sensors is generated
using multiplying factors (MFs) of 1.2, 1.1, 0.9 and 0.8

Table 1. All the 17 states and multiplying factors (MFs).
S.N Fault Name MFs

1 No Fault (NF)

2 5% Leakage in Intake Manifold

3 10% Leakage in Intake Manifold

4 15% Leakage in Intake Manifold

5 20% Leakage in Intake Manifold

6 EGR valve stuck 25% closed

7 EGR valve stuck 50% closed

8 EGR valve stuck 75% closed

9 EGR valve stuck 100% closed

10 Temp. sensor 20% over reading MF=1.2
11 Temp. sensor 10% over reading MF=1.1
12 Temp. sensor 10% under reading MF=0.9
13 Temp. sensor 20% under reading MF=0.8
14 Pressure sensor 10% over reading MF=1.2
15 Pressure sensor 20% over reading MF=1.1
16 Pressure sensor 20% under reading ~ MF=0.9
17 Pressure sensor 10% under reading ~ MF=0.8
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for over or under reading, respectively, as shown in Table 1.

4.2. Network Training

Two RBF networks are used for fault classification, with
one for the non-adaptive classifier and the other for the
adaptive classifier. Both networks have the same struc-
ture and will be trained with the same training data as
well as using the same training algorithm. The training
for the adaptive network is referred to as initial training.
After training, the non-adaptive network will be used to
do fault diagnosis with the test data without on-line
training, while the adaptive network will be used with the
same test data but with on-line training. This establishes a
fair basis for comparison between the adaptive and non-
adaptive classifiers.

The network input variables are chosen according to
the experience in engine modelling as the four variables
shown in Figure 1: throttle angle, manifold pressure,
manifold temperature and crankshaft speed. Therefore,
the network has 4 inputs. Each network output is used to
indicate the occurrence of one faulty state 0 (zero), which
implies that the fault does not occur while 1 (one) implies
that the fault occurs. Therefore, the network has 17
outputs with each corresponding to the one fault or no-
fault condition. Twenty data sets for different initial and
final throttle angle positions are collected as shown in
Table 2.

Two data sets, one acceleration data with 6=26°—34°
and one deceleration data with £=34°—26°, are used as
test data. All the remaining 18 sets are used as training

Table 2. Details of data sets collected for training and
testing of RBF networks.

Start degree

. No. of
of 6 Accelerating

Decelerating data sets

22 26, 30, 34, 38 — 4
26 30, 34, 38 22 4
30 34, 38 26, 22 4
34 38 30, 26, 22 4
38 - 34, 30, 26, 22 4
Row Numbers Xo
1~12 1 06 0 0 0 1
13 ~ 24 0
: 0
0
0 1
193 ~ 204 E |

Figure 7. Target matrix X,.

data. As each training data set has the same pattern for 17
faults, one training target matrix X, (Figure 7) is formed
and used for all the training data sets. X, has 204 rows
and 17 columns. Its first column has ones from the first
row to 12® row with all other entries as zeros and the
second column has ones from the 13" row to the 24® row
with all other entries as zeros, and the last column has
ones from the 193" row to the 204" row with all other
entries as zeros.

Thus, the transposition of the i row in X, is used as
the training target vector for the i" training pattern. The
centres are chosen using the K-means clustering algorithm
from the training data sets. The widths were chosen using
the P-nearest neighbour’s algorithm. The weights were
trained using the RLS algorithm. Two levels, 0 and 1, are
used as the output targets of the classifier. Thus, the target
matrix is a unity diagonal matrix of dimension 17 (when
there is one training pattern for each fault) with each
colurnn being used as the classifier-training target vector.
A successfully trained network will therefore diagnose
the fault intensity as well as the fault type.

4.3. Fault Classification

Both adaptive and non-adaptive networks are used to
diagnose faults with test data sets after training with the
training data sets. The fault detection threshold in (4) was
chosen as r,=0.5. High thresholds may lead to missed
detections while low thresholds will cause more false
alarms. Mathematically, r, should be a little bit higher
than 0.5 according to the level of noise in the testing data.
However, r,=0.5 is found as a good compromise between
reliability of detection and insensitivity to noise. M in (3)
is chosen as 3. The averaged residual will be greatly
reduced and the false alarm is consequently reduced. The
threshold for the gradient of the objective function in (5)
was chosen as ¢=0.00001. The forgetting factor for the
RLS algorithm was chosen as a constant value of
A=0.99.

The three different reference signals 2.5 kRPM, 3.0
kRPM, and 3.5 kRPM are chosen as Refl, Ref2 and Ref3
for the speed control, respectively. No fault and faulty
data is collected for all three reference signals. Both the
non-adaptive and the adaptive RBF neural network
classifiers are then trained and tested for six different sets
of data. The results for training the networks on the Ref 1
and testing on the Ref 3 data are shown in Figure 8 and
Figure 9. The number of centres for the adaptive and non-
adaptive networks is chosen as 100. It is clear that the
non-adaptive classifier is not able to classify the simu-
lated faults while the adaptive network classifies the
faults with just a few peak values that may cause false
alarms when 0.5 is used as the fault detection threshold.
These faults are classified when the engine is under
closed-loop speed control.
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Figure 8. Networks trained on Refl and tested on Ref3: (a) Non-adaptive; (b) Adaptive.
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Figure 9. Details of each fault classification in Figure 8(b) shown separately for clarity.

In comparison, it is found that the adaptive classifier
has performed far better than the non-adaptive classifier.
Unlike the non-adaptive classifier, the adaptive classifier
is able to identify all the faults but with false alarms. For
clarity, Figure 8(b) is shown in an expanded form in
Figure 9 with every fault classification shown separately.
It can be seen that state 1 has one false alarm, state 2 has
two false alarms, state 3 has one false alarm, and so on.
Here the requirement of data filtration is because of the

false alarms.

5. ROBUSTNESS ASSESSMENT OF FDI
SYSTEM

Further to introducing speed feedback control, robustness
assessment of the FDI system is carried out in the
following three different modes in increasing generality
of engine operation:
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Figure 10. (a) Sinusoidal load change; (b) Saw-tooth load change; (c) No fault response for Saw-tooth load change.

(1) Load change
(2) Engine parameter change
(3) All the changes happening simultaneously

5.1. Load Change

To incorporate the provision for engine load change in
the MVEM, the crankshaft speed sub-model is modified.
The pumping power P, and the friction power P; are
functions of absolute manifold pressure P; and crankshaft
speed n whereas the load power P, is only a function of
crankshaft speed as shown in equation (8). The load
factor K, (=0.47) is a constant. Engine load can be
changed by changing load power P,. The load on the
engine in kW is given as:

Engine Load=K,*n’

Engine load is equal to the load power of engine and
therefore,

Pb=Kh*n3
Load Power in the modified model is presented as
Pb=Kb*n3+L,,

where L, is the load variation in kW and n is the
crankshaft speed in kKRPM. The reference signal is kept
fixed but the load on the engine is changed in sinusoidal

and saw-tooth style as shown in Figure 10(a) and (b).
The change in load is applied through variable L, as
shown in the simulation diagram in Figure 2. In the
case of a sinusoidal load change, the load on the
automobile (engine) can be negative for some time. This
represents the downhill running of the vehicle. Similarly,
an increase in the load represents the uphill running of the
vehicle.

Two sets of data are collected for no fault and faulty
conditions; the first set of data for the sinusoidal change
in the load and the second set for the saw-tooth change in
the load. The reference input signal is kept constant at 2.5
kRPM for both data sets. First of all, both networks are
trained with data for the sinusoidal load change and
tested with data for the saw-tooth load change and then
vice-versa. With both training data sets the classification
results were found satisfactory. The classification test
results for both classifiers when tested for the sinusoidal
load change are shown in Figure 11. The results of the
non-adaptive classifier are not good as shown in Figure
11(a) and it is not able to identify different faults, where
as the adaptive classifier is able to identify all the faults as
shown in Figure 11(b) and (c) but with false alarms.
There are several false alarms in all and they can be seen
in Figure 11(c) as small spikes exceeding a threshold of
0.5.
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Non-adaptive classifier, Hidden Nodes=90, Trained on Saw-woth load, tested on sinusoidal load change
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Figure 11. Networks trained on saw-tooth load and tested on sinusoidal load. (a) Results for Non-adaptive classifier; (b)
Results for Adaptive classifier; (c) Details of each fault classification in; (b) shown separately for clarity.

5.2. Engine Parameter Change

The engine displacement is a constant for an engine and
is 1.275 litres for the MVEM. After a few years of
operation, the engine displacement has a tendency to
increase by a small amount due to abrasion. In order to
check the robustness of the classifier against such an
aging effect of the engine, the no fault and faulty data for

1% increased engine displacement (i.e. 1.01¥1.275 litres)
is collected. Both classifiers are trained for the normal
engine data and then tested on the data from the increased
engine displacement. In this part of the experiment the
speed reference signal and the load on the engine are not
changed. It is found that the performance of the adaptive
classifier Figure 12(b) and (c) is much better than the
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Non-adaptive classifier, Nodes=60, Trained on normal, tested on 1% increased Engine displacement
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Figure 12. Networks trained on normal and tested on 1% increased engine displacement: (a) Non-adaptive classifier; (b)
Adaptive classifier; (c) Details of each fault classification in b shown separately for clarity.

non-adaptive classifier Figure 12(a) but with false alarms. happening simultaneously, i.e. when the reference is a
There are several false alarms in all and they can be seen saw-tooth signal, the load is changing in the sinusoidal
in Figure 12(c) as small spikes exceeding the threshold of style and the engine displacement is increased by 1%.
05. Both non-adaptive and adaptive classifiers are trained on

data with fixed reference, no change in load, no increase
5.3. All the Changes Happening Together in engine displacement, and then tested with the data

In this section data is collected for all the changes when all the changes happen together.
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Non-adaptive classifier, Nodes=90, Trained on 2.5kRPM throttle, no load change, no dispalcement change
and Tested on Saw-tooth throttle change, Sinusoidal load change and 1% increased engine displacement
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Adaptive classifier, Nodes=90, Trained on 2.5kRPM reference throttle angle, no load change, no dispalcement change

and Tested on Saw-tooth throttle change, Sinusoidal load

change and 1% increased engine displacement
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Figure 13. Networks trained on fixed reference and tested on saw-tooth reference, sinusoidal load change and 1%
increased engine displacement: (a) Non-adaptive; (b) Adaptive classifier; (c) Details of each fault classification in b

shown separately for clarity.

The results in Figure 13(b) and (c) show that the
adaptive classifier performs well as compared to the non-
adaptive classifier in Figure 13(a) but with false alarms.
There are several false alarms in all and they can be seen
in Figure 13(c) as small spikes going over threshold of

0.5.

In order to improve the problem of false alarms, the
signal processing toolbox in Matlab is utilised and a third
order low-pass digital filter is designed to suppress the
spikes in the resultant data. A Butterworth digital filter
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Figure 14. Classification results after using a low-pass Butterworth filter. (a) Comparison of classification results before
and after filtration for fault number 4; (b) Classification results of 13; (¢) after filtration.

can be designed using the Matlab function “butter”. The
function has two arguments N and W,, for the order of the
filter and cut-off frequency, respectively. The function
returns the filter coefficients in length N+1 vectors B and
A, numerator and denominator, respectively. The cut-off
frequency must be 0.0 < W, < 1.0, with 1.0 corresponding
to half the sample rate. The value of W, is to be chosen
carefully. A high value may not do any filtration at all
whereas a very low value may cause a long time delay
and poor filtration. A value of 0.1 has been carefully
chosen for W, which reduces the spikes to half of their

original height (i.e. much below the threshold of 0.5) and
causes little time delay. The false alarms are practically
reduced to zero times as shown in Figure 14(a) and (b).

It can be seen from graphs in Figure 14 that the spikes
causing false alarms have been filtered out and make the
classification more robust and reliable.

6. CONCLUSIONS

A new adaptive RBF-based FDI method for an SI engine
is evaluated for robustness. The classifier is adapted for



650 M. S. SANGHA, D. L. YU and J. B. GOMM

its widths and weights to learn changes in the system
dynamics and environment. The robustness of the system
is investigated for a wide range of operational modes in
increasing generality. Robustness assessment has been
carried out against fixed and sinusoidal throttle angle
inputs, change in load, change in engine parameter, and
all these changes occurring at the same time for both
adaptive and non-adaptive networks. The adaptive network
performs very well and the simulation test results are
satisfactory for all sixteen of the faults considered. The
non-adaptive classifier fails to cope up with the load
change, parameter change, etc. Thus, it is not robust
whereas the adaptive network classifies all the faults
correctly and the false alarm is reduced to zero by the use
of a low-pass filter.

Robustness assessment against different types of
unknown faults and simultaneously occurring multi-
faults is considered for the future work.
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