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Adaptive Control of a Class of Nonlinear Systems
Using Multiple Parameter Models

Choon-Young Lee

Abstract: Many physical systems are hybrid in the sense that they have continuous behaviors
and discrete phenomena. In control system with multiple models, switching strategy and stability
of the closed-loop system under switching are very important issues. In this paper, a novel
adaptive control scheme based on multiple parameter models is proposed to cope with a change
in parameters. Switching strategy guarantees the non-increase in the global control Lyapunov
function if the estimation of Lyapunov function value converges. Least-square estimation is used
to find the estimated value of the Lyapunov function. Switching and adaptation law guarantees
the stability of closed-loop system in the sense of Lyapunov. Simulation results on anti-lock
brake system are shown to verify the effectiveness of the proposed controller in view of a large

change in system parameters.
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1. INTRODUCTION

A common approach to control complex dynamic
systems is to design a set of different controllers, each
of which for a particular operating region or
performance objective, and then to switch them in real
time to achieve the overall control objective. This is
the philosophy behind gain-scheduled controller [1,2].
Many physical systems are hybrid in the sense that
they have continuous behaviors and discrete
phenomena. A good example of a complex hybrid
system is an automobile. Discrete signals are gear
ratios, load and road characteristics, driver inputs, and
control signals and warnings of the Anti-lock Brake
System(ABS). The continuous parts are often
nonlinear dynamics of motion, motor characteristics,
sensor signals, and so on. Continuous dynamic
characteristics vary according to the state of discrete
signals. Dynamics can be changed by the operator
input or due to a change in the environment. Therefore,
it is required to implement a different controller for
each operating condition.

An intelligent control system may have the ability
to operate in multiple environments by understanding
the current operating condition and achieving the
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various tasks appropriately. The ability to adapt to
unknown operating conditions is an important
attribute of intelligent systems. Adaptive control is a
promising technique to obtain a model of the plant
and its environment from experimental data and to
design a controller. Adaptive control for a feedback
linearizable nonlinear system has attracted much
interest among control system designers over several
decades. If the exact knowledge of the system is
available, it is possible to transform a nonlinear
adaptive control problem into a linear control problem
by using a feedback linearization technique [5].
However, in many cases, the plant to be controlled
is too complex to obtain the exact system dynamics,
and the operating conditions in dynamic environments
may be unexpected. Therefore, recently, an adaptive
control technique has been combined with function
approximators such as neural networks, fuzzy
inference systems, and series expansion. These types
of controllers take the capability of learning unknown
nonlinear functions by universal approximation
theorem [6,7] and massive parallel computation [8].
Based on the fact that universal approximators are
capable of uniformly approximating a given nonlinear
function over a compact set to any degree of accuracy,
a globally stable adaptive controller has been
developed with an adaptation algorithm [9-19]. An
adaptive control scheme was used with a neural
network to obtain a stable controller [4,10,12,14,17].
An observer-based controller was derived for
nonlinear systems with state estimation without
measuring all the states [13,15]. Off-line training of
the robot manipulator was used in [11]. Although all
these methodologies showed good performance in
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Fig. 1. Concept of the controller with multiple models.

controlling uncertain dynamic systems, there are
unavoidable large transient errors at the time of task
variation. For example, if a robot manipulator has to
perform task 1, task 2, task 1, task 2, repeatedly in this
order, an adaptive controller will always adapt itself to
the new task, repeatedly, causing the system to forget
the control skill acquired previously. Although task 1
is encountered for the second time, the adaptive
controller recognizes it as a new task as the controller
has already been adapted to task 2. However, if the
dynamic parameters and control skills are stored for
each task, this information can be utilized to recognize
the tasks when the tasks encounter repeatedly at a
later time. It also makes the system be able to cope
with the repeating tasks quickly.

For this reason, a multiple-model-based recon-
figurable control strategy was suggested [3]. The
objective of multiple models is to improve the
transient performance of linear adaptive control
systems with large parametric uncertainties. As shown
in Fig. 1, system parameters may change abruptly

from a nominal point #° in the parametric space, to
the point 8* due to a system failure. In some robotic
applications, this situation includes the case that load
at the end-effector affects parametric space of the
system. The top figure illustrates the case of an
adaptive controller with a single model. This system
may be stable and ultimately find the optimal
parameter vector to control the system after change,
however, it is too slow to identify the new operating
condition, and it may cause large transient errors
during the adaptation. The bottom figure illustrates the
case of an adaptive controller with multiple models.
This architecture uses switching of multiple models.
With some switching strategy, system parameters
switch to the closest model, and the adaptive law finds
the optimal parameters to control the system after

change. This scheme can make fast and accurate
response compared to that with a single model.

In control system with multiple models, switching
strategy and stability of the closed-loop system under
switching are very important issues. Most switching
strategies aim to use identification errors between
models and the real plant. In this paper, a new
switching strategy is derived to select the most
appropriate one among multiple models using the
estimation of Lyapunov function values. Switching
strategy guarantees the non-increase in the global
control Lyapunov function if the estimation of
Lyapunov function value converges. Least-square
estimation was used to find the estimated value of the
Lyapunov function. Switching and adaptation law
guarantees the stability of closed-loop system in the
sense of Lyapunov. This method is simply intuitive
and performance-improving.

To make the system respond fast, general direct
adaptive control design method is used with indirect
estimation of the Lyapunov function value by least-
square method. In this paper, we used the Lyapunov
function of two arguments. One is tracking error
which can be measured from the state values. The
other is parameter estimation error which is basically
unknown. Therefore the estimation of the Lyapunov
function is done by calculating parameter estimation
error. Under the assumption on the system structure,
an identifier estimates parameter estimation error. By
comparing the parameter estimation errors among the
fixed model, we can infer the most closest nominal
model from the multiple models. By switching the
current adaptive model to the selected model under
Lyapunov stability, we can achieve performance-
improving switching. With the proposed scheme, the
transient response of the system is improved despite
the system parameter varies abruptly.

2. MODELING OF NONLINEAR SYSTEMS

Consider the n-th order nonlinear dynamic system
of the form

xl = X2,
)2/'2 = .X,'3,
(1)
%, = f(x1,%9500%,) DU+ d,
y = x]’
or equivalently
" = £, % XY 4 bu + d, @

y=x

where fis unknown but bounded functions, u € R and
yeR are the control input and output of the system
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respectively, and d is an external bounded disturbance.
If (2) is represented in the state space, we obtain

x=Ax+B({f(x)+bu+d),

y=CTx, (3)
where
[0 1 0 0 - 0 O]
0 0 0 0
A=|: ¢ )
0000 O
0000 0 0] _
o 1 4)
0 0
B=|:|, C=|:|,
0 0
_IJ _0_

T .
and x=[x1 Xy x,,] eR" is a state vector

where all x; are assumed to be available for
measurement. In order for (2) to be controllable, it is
required that »#0 for x in a certain controllability
region U, c R". ‘

Assumption 1: Without loss of generality, we can
assume that | f(x)|< fY(x)<o for xelU,, and.

Furthermore, external disturbance is bounded, i.e.

|d] <d, where d, isthe upper bound of noise d.
Assumption 2: We assumed that f(x)= Z i ) 9,0;

for xeU,. We also know that the regressor ¢(x)

T
= [¢1 b ¢p] ‘
Let the reference signal vector y, and the tracking
error vector e be defined as

Ya :|:Yd’ )"da"'J’d(n_l)}T eR”, %)
e= [e, e',---e("_l):]T eR”, (6)

where e=y;—y=y;—-x€R Then the control

objective is to generate an appropriate control signal
such that the system output y follows a given bounded
reference signal y; under the stability constraint that
all signals involved in the system must be bounded.

3. DESIGN OF CONTROL SYSTEMS

If the functions /' (x) and b are known and there i3
no external disturbance 4, then we can choose the
following controller canceling the nonlinearity of the
system,

u' = %[*f(x) + yd(n) + lTe} o
= Z[—¢T¢9 + 3, + ﬂTe].

If we apply the feedback linearizing controller (7)
into the system (3), we obtain

é=Ae, ®
where
0 1 0
A=l 00 ° ©)
Ay Ay e =4,

In particular, let 4 =[4,4,-,4,]7 €R" be chosen

such that A is Hurwitz, then lim,_,, e(f) =0.
Suppose that the control u is the summation of an

adaptive control ua(x|é) and a supervisory control

u(Xx):
u=u,(x|0)+uy(x). (10)

If we select a Lyapunov function candidate as
1 r
V= Ee Pe (1)

and let the overall control law be defined as follows,
u=u, +ug, (12)

u, = %[—J}(x) + yd(n) + lTe]
1 A (13)
= Z[_¢(X)TH +y,7 + lTe],

ug = I sgn(eTPBc)

1 (14)
: @ |+ (17 01y 1 +1 A e+, )},
where BC:[O,O,---I]T, f is the estimate of f,
fU(x) is the upper bound of f, I"=1, if V>V,
and I'=0 if V<V, if a>0

and sgn(a)=0 if a<0, and V, >0 is a constant

and sgn(a)=1

assigned by the user.

Theorem 1: Consider the nonlinear system
described by (3) satisfying Assumption 1, and subject
to the controller given in (12)-(14). Then ¥V} <V, as
t — o, where V, is a positive constant.

Proof: Applying (12) to the plant (3) we obtain
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X=Ax+B(f(x)+b(u, +u)+d). (15

After simple manipulations, we can obtain the error
dynamic equation

é=Ae—B/1Te+Bc{u* —u, —u, —ld}
. (16)
:Ae+Bc{u* —U, — U _Zd},

e = Cle, 7

where A=A-BAT, and e =Y;—X.
Since ‘A is Hurwitz, there exists a positive definite

symmetric. matrix P which satisfies the Lyapunov
equation

ATP+PA=-Q, (18)

where Q is an arbitrary positive definite matrix.

From the Lyapunov function candidate of (11), if
we take the time derivative of (11) along the
trajectories of error dynamics (16), we obtain

V= LeTpesLeTpe (19)
2 2

=%eT(ATP+PA)e

| (20)

+eTPBC {u* —U, — U —Zd}

* 1
:—%CTQC'FCTPBC {u —u, — U —Zd}. 21

If we rewrite the above equation,

; 1 7 T % 1 }
V; <——e Qe+|e PB u |+lu, |+—|d
1575 Qe+| c|{| | +]ug | bl |(22)

- eTPBCuS.

Considering the case of V] >V, and substituting
the supervisory controller (14) into (22), we obtain

v, < —%eTQe. (23)

Therefore, we always have V<V, by using the

supervisory controller. O
The bound of ¥, implies the bound of the

magnitude of the error vector e. Moreover, it also
means that the state vector x is bounded. Therefore,
the closed-loop system with the controller (12)
operates well to stabilize the given system in the sense
that the error is not diverged.

Next, we develop an adaptive law to adjust the

parameter vector 6 .

Define the optimal parameter vector:

§" =arg min | sup |u,(x|0)—u"| (29
|6<Mpg | |xj<M,

and the minimum approximation error:
w=ua(x|é)—u*, ’ 25)

where u,(x]| é) is the approximated controller of the
ideal adaptive controller and is different from u, in
(16). Ideal adaptive controller u, in (16) will

* .
converge to u , however, the approximated controller

in (25) will have approximation error, w.
If the approximated adaptive controller is used, the
error equation (16) can be rewritten as

. * 1
e=Ae+Bc{u —ua}—Bcus—Bc(er;dj, (26)
. 1 T * 1 T A
e—Ae+Bc{Z(—¢ (x)0 )—Z(—qﬁ (X)H)}
27)
-B.u, —B, (w+ld),
b
é=Ae-B, %(gIST(x)é)—Bcus _B, (w+%dj,(28)

where 6=0"-9.
Let the Lyapunov function candidate be

v, _LeTper Larg, (29)
2 2b

where T is a positive gain matrix.
Taking the time derivative of the above Lyapunov
function candidate, we obtain

; 1
sz—EeTQe
T 1 TA 1
+e PB.«——¢' 0 -u,—w-—d (30)
b b
| PPN
+-60°0,
b
. 1
sz—ge Qe

—%é(eTPchﬁ—F_lé) G1)

o
~¢/PB, {us + w+gd}.
If we choose the adaptive law:

6 = T’ PB,#(x) 32)
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and the fact e’ PB Mg 20, then, we obtain
; 1 r T 1
Vs S—Ee Qe—¢ PB, w+;d . (33)

In order to guarantee ]é <My, we will use a
projection algorithm to modify the basic adaptive law
[23,24].

If |§< My or (|6|=M, and ' PB 4" (x)6>0),

6 = -Te’ PB,g(x). (34)
If |f]=M, and ¢ PB4’ (x)0 <0,

. AAT
6 =-Te'PB,g(x)+Te’ PB, efé—qjlz("), (35)
where I is the adaptation gain.
Suppose the parameter estimate is reset instant-

taneously from é(t) to é,- (r+) at any time instant ¢,
the jump in the Lyapunov function is given by

AV =V (t+) =1 (1), (36)

where t+ denotes an infinitely small time increment of
t. At this time of ¢+, the parameter update law (34) and
(35) does not apply, and the Lyapunov function may
be discontinuous. We also assumed constant error
signals at time £+

If we allow parameter estimate to be changed into
the most possible model in the set of models, the
stability of the closed loop system under switching
can be considered using multiple lyapunov functions.
The stability preserving switching is to select at each
time the minimum of several Lyapunov functions {20].
A stability preserving and performance-improving
reset condition for parameter estimate is now Al; <0.

We cannot evaluate the Lyapunov function (29) as
we do not know the exact parameter 6" to calculate

the term 4.
We assume a finite number of fixed parameter

hypotheses él, éz, e ép

time instant to see which one gives the largest
guaranteed decrease in AV, .

that we compare at each

From the plant model X" = ¢T (x)@ + bu , applying
a low-pass filter H(s) = ﬁ, we obtain the following

linear parametric model of the form
20 =¢" 08, (37)

where z(f) = sH(s)x"™ —bH(s)u(t) and (1) =H(s)
¢(x). The main purpose of this filter is to replace

differentiation operations by appropriate high-pass
filters, and to reduce the effect of high-frequency
noise.

The finite number of fixed parameter hypotheses
Z
relations:

2 =¢T (06, (38)

for all i=0,1,2, ..., p. Index 0 is for the parameter
which is currently adapted. Then, prediction errors are
defined as

g1 =2()-2,()=¢T ()0 - ). (39)

The signal &;(r) is available, and contains infor-

is used to make prediction using the following

mation about & . In order to achieve invertibility,
this equation is premultiplied by the matrix ¢ (r) and

integrated on the time interval from ¢-7 to ¢, where
>0 is a finite time window

0 -6,=wey" p0). (40)
where W (1) = J.tl‘Tg(r)é’T(r)dr and p;(1) = Lt_r

¢(r)g;(t)dr .

At each time instant, we compare the following
Lyapunov function values with the performance of the
current adaptive controller.

AV2i=V2i"V20, i=1,2,"',p, (41)

where V5 is the estimated Lyapunov function value
for the current adaptive controller, and V5,

i=12,---,p is the estimated Lyapunov function

values for the fixed multiple models.
We switch controller with a new parameter of j-th
model if the following condition holds:

AV, <=6, (42)

where 6 >0 is a positive constant which prevents
chattering during switching [21].

Theorem 2: Consider the nonlinear system
described by (3) satisfying Assumption 1, and subject
to the controller given in (12)-(14) and adaptation law
in (34) and (35). If we apply switching of controller
with the parameter of multiple models according to
(42), then the overall control scheme after the
convergence of switching guarantees the following
properties:

)] |é|s Mg , state vector is bounded, and the
control input is bounded.

(ii) I(;|e|2 dr£a+ﬂj;| w(z) P dr+§f(;|d(r)[dr
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for all +>0, where ¢ and £ are constants,

and w is the minimum approximation error
defined by (25), and d is the disturbance input.
(iii) If w and d are squared integrable, i.e.,

j:’q w(t) > +|d(t)P)dt <o, then lim |e(t)|=0.
{—0

Proof: Under any switching sequence, the adaptive
law guarantees the bounded property of parameter

estimation. Let 7, =%€AT9. If (34) is true, we have

either |é <M, or Vé = —FeTPBc¢(x)é <0 when

|é|= My, ie., we always have |é|§ My If (35) is

true, we have |f|=M, and Vé=—FeTPBC¢(x)é
62

+FeTPBC ?52()&) 8=0 ie., we always have |f|< M, .

1o
Therefore, we always have | 6 |< My, forall ¢=0.
In Theorem 1, we proved that ¥} <V, therefore,

. Since

1 2T , 2,
7 min(P) e < ze Pe<Ve, e el 7=

[ 27,
e=y,; —x,wehave|x <]y, |+]el|<|yy |+ T (P

Supervisory control input has the following
property
g ity |+ 1Y 00+ 17 [+ 4] |5 +d
s a b d ﬂmin(P) “m
(43)
Adaptive control input has the following property

_1 \ (m) W
lua|_‘b|:|¢(x)|M9+‘yd |+ 4} ﬂmin(P):|‘(44)

Therefore, we have

iy |+, 1s%<fU(x)+2t¢(x)|Mé

7 45)
+3]p, " 431 4], |——— +d,,).
ﬂ‘min (P)
Since switching occurs only if AV, ; <-4,
V<V,, (46)

where V, is a performance improvement without

switching and V is the selected Lyapunov function
among the multiple Lyapunov functions.

V< —leTQe—eTPBC {w+ld}
2 b

<2 (@ e PR w2

< —%(ﬂ.min(Q)—l)|e|2 +%|PBC {w+%d} 2,

vV s—%(ﬂmin(Q)—l)lelz +—;—IPBcw 2 +%|PBcd F
(47)
Integrating both sides of (47) and assuming that
Amin (Q) >1 since we can determine such a Q, we

have
t 2 2
Jylel dr <o — IO+ OD
— L |pB,p I;|w|2 dr

2 (4 42
|PB, [ [ |df dr

e

o@D
<a +ﬂj;| w(z) ] dr+§ jé| ()| dr,

)
where =20 (|V/(0) | +supysg | V() ]) and 4
- 1 2
 Amin (Q-1 IPB |
If wel, and del,, then ec L,.From the error
dynamics equation (16), e e L as it has been proved

that all the variables on the right-hand side of (16) are
bounded. Using Barbalat’s lemma [25], we have

lim,_,, {e(®)|=0. O

To prove the boundedness of all signals under
switching scheme, we use the following definitions.

Definition 1 [PC ] : the set of all real piecewise
continuous functions.

Definition 2 [Large order]: y(¢) = O[x(¢)] if there
exist positive constants M,, M,, and f, such that
|y |= My | x(D)|+My, 1 214

Definition 3 [Small order]: y(#) = o[x(¢)]if there
exist a function S(t)e PCq.) and f such that

| y(®) = B)x(), Vt 2 tyandlim,_,,, B(t)=0.

Definition 4 [Equivalence]: If y(¢f) =O[x(¢)] and
x(#)=O0[y(t)] then x and y are said to be equivalent
and denoted by x~y.

From the above definition, we can easily find the
following properties.

Property 1: If x is unbounded and y is bounded,
then y=o[x].

Property 2: If z is unbounded and y=o[x] and
x=0[z] then y=o0[z].

The following lemma will be used in the proof of
stability under switching.

Lemma 1: Consider a linear system

é=Ae+B,[i7+v], (49)



434 Choon-Young Lee

where A is an asymptotically stable matrix and
veL”. If @ is bounded over the interval [0,f,)
and |u|<nM(t) for t>1¢,,

1
“eAtB

where M(f) =sup,,

with | e™B, |, denoting

fe()|l and 7<

1
the I' norm of ¢MB,, then the error e is uniformly
bounded, and # = O[e] [26].

Theorem 3: Consider the nonlinear system
described by (3) satisfying Assumption 1, and subject
to the controller given in (12)-(14) and adaptation law
in (34) and (35). If we apply controller switching with
the parameter of multiple models according to (42),
then all signals involved are bounded under switching.

Proof: We prove the boundedness of the signals by

contradiction. Assume that y is unbounded. From

the definition of the error signal, we can say thate ~ y .

Since the error dynamics é=Ae+B_[ii —u,] has an
asymptotically stable dynamics, i.e., any input #
cannot grow faster than the error signal e, we have
ii=0[e]=0[y]. Since #=1[-4"8], we can say that
¢=0[e]=0[y], or ¢ does not grow faster than e.

In the switching scheme, there are two cases: The first
case if where there is no switching when the estimate
of the Lyapunov function is unbounded. The second
case is where the parameter estimate is jumped to one
of the multiple models when one of the estimate of
Lyapunov functions is finite. In the first case, the
system is stable from the proof of Theorem 2. In the
second case, we can say that e=of@#] since we

assumed that y is unbounded. That is, error signal
grows at a lower rate than the regressor vector. From

the above procedure, we have e=o0[e] and y=o0[y].

That is, the signal y grows slower than itself. This
cannot happen if y is assumed to be unbounded.
Therefore, y is bounded, and the boundedness of other
signals follows in the same way. 0

4. APPLICATIONS

This section shows simulation studies to verify the
effectiveness of the proposed control system. The
system is an anti-lock brake system which is a safety
device in an automobiles.

Anti-lock brake systems (ABS) were first
introduced in railcars in the early 1900’s. The original
motivation is to avoid flat-spot of the steel wheels. It
was soon noticed that stopping distance was also
reduced by the ABS. Vehicle traction control, which
includes anti-skid braking and anti-spin acceleration,
can enhance vehicle performance and handling. The
objective of this control is to maximize tire traction by
preventing the wheels from locking during braking
and from spinning during acceleration.

Dry Asphalt

~ -
~ .-

Friction Coefficient
)
o

L L L ! ! ! ! ! L
0 10 20 30 40 50 80 70 80 90 100
Slip Percentage (%}

Fig. 2. u— A curve for different road surfaces.

Wheel slip is the difference between the vehicle
speed and the wheel speed (normalized by the vehicle
speed for braking and the wheel speed for
acceleration), and it is chosen as the controlled
variable for most of the traction control algorithm as it
has a strong influence on the tractive force between
the tire and the road. Typical relationships between the
longitudinal adhesion coefficient (the ratio between
the longitudinal tractive force and the normal load)
and wheel slip (x— A curve) are shown in Fig. 2.
Pacejka Magic Formula [22] was used to simulate
friction coefficient between the road and tire under
predefined scenario.

A quarter car model is given by the following
motion equation:

- (50)

M =rF, —T,sign(w), Y

where v is the longitudinal speed at which the car
travels, w is the angular speed of the wheel, F, is the
vertical force, F, is tire friction force, T} is the brake
torque, r is the wheel radius, and .J is the wheel inertia.

The tire friction force is given by F, = F, u(4, uy ),
where A =(v—wr)/v is the slip value, uy is the
maximum value of friction coefficient for different
road conditions, and « is the steering angle.

The dynamics of slip can be written as follows,
assuming w>0 and v>0,

1 (1 r?
/1=——{—(l—l)+7}qu(ﬂ,ﬂﬂaa)
v im (52)
17
+——1,,
v.J b
. 1
v:_;Fzﬂ(;L,ﬂH,a). (53)
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The control objective is to maintain slip ratio
A=0.2 during braking. The road surface is assumed
to be wet-icy between 1.second and 4 second after
braking has been applied. Four fixed models were
used with ' ={0.2, 0.5, 0.7, 0.9}.

Figs. 3-4 show the results of adaptive control with a
single model on ABS control. Slip control error
slowly decreases (Fig. 3) since it takes time to
estimate accurate friction coefficients (Fig. 4). Figs. 5-
8 shows the results of adaptive control with multiple
models on ABS control. Slip control error converges
rapidly to zero (Fig. 5) since the estimation of friction
coefficient converges to the actual value quickly (Fig.
6). Fig. 7 shows the estimated Lyapunov function
values for each model. According to the switching
strategy, the most promising parameter is selected
comparing the estimated Lyapunov function values.
Fig. 8 shows the switching sequences. There are two
switching between models, around 1 second and 4

02

0151

005k -

slip control error

—0.05F - e i

—o.1 L L L L L L
0 1 2 3 4 5 [ 7
time (sec)

Fig. 3. Slip control error by adaptive control with a
single model.

slip control error

0.2 L L L 1 ; i
0 1 2 3 4 5 6 7
time (sec)

Fig. 4. Estimation of friction coefficient by adaptive
control with a single model during braking.

Table 1. Performance comparison between ACS and
ACM for ABS system.

Interval TAEAcs TAEAcMm Pl
1 €[0,6.85] 0.1024 0.0430 58.0367
IAE pcq —
p1= APacs “TAE Ao g0,
TAE 55

second, as expected. Vertical axis indicates the index
of parameter models. Table 1 presents the comparison
of error measurements (IAE: Integral of Absolute
Error) between adaptive control with single model
(ACS) and adaptive control with multiple model
(ACM) for ABS control. From the table, we achieved
more than 50 percent of improvement in the integral
of absolute errors during braking.

From the simulation results, we can see that
adaptive control with multiple models shows
improved transient response despite the change in

02

01

slip control error

008 ‘ i i l i .
[ 1 2 3 4 5 6 7
time {sec}

Fig. 5. Slip control error by adaptive control with
multiple models.

055 T T T

045k -0 s e

035

friction coeff. estimation

0.3

0.2
[

time (sec)

Fig. 6. Estimation of friction coefficient by adaptive
control with multiple models during braking.
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Fig. 8. Switching sequences by adaptive control with
multiple models.

road surface characteristics. The key idea of this paper
is similar to the literature [21] and this paper applied
the estimator-resetting technique to an adaptive
switching  control, instead of the adaptive
backstepping. This paper used a supervisory controller
with adaptive switching control to compensate
modeling error and noise. The advantage of the
proposal is to easily implement adaptive switching
control from the certainty equivalence principle for
the considered form of nonlinear systems. Although
the class of nonlinear systems considered in this paper
is more restricted than the one in [21], the proposed
algorithm in this paper is useful if we model an
unknown nonlinear system as companion form with
augmented nonlinearity practically.

5. CONCLUSIONS

General direct adaptive control design method was
described with indirect estimation of the Lyapunov

function value by least-sq”ilare method. Under the
assumption on the system structure, an identifier
estimated parameter estimation error using filtering.
By comparing the parameter estimation errors of the
fixed models, we could infer the most closest nominal
model from the muitiple models. By switching the
current adaptive model to the selected model under
Lyapunov stability, we could achieve performance-
improving switching. With the proposed scheme, the
transient response of the system was improved in view
of abrupt parameter variations. Simulation results on
the control of anti-lock brake system showed the
validity of the proposed approach.

The automatic generation of parameter models and
the management of multiple models for control
system will be further research topics.
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