• Title/Summary/Keyword: Active solar heat system

Search Result 30, Processing Time 0.023 seconds

Enhancement of Stratification for Solar Water Storage Tank with Spiral Jacket and Coil(Part 2 Simulation) (나선유로에 의한 태양열 축열조 성층화 촉진(제2보 시뮬레이션))

  • Lee, Seong Hoon;Son, Hyo Seok;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • We have performed experiments to enhance the stratification in a storage tank in order to raise the collector efficiency and solar fraction in solar thermal systems. The storage tank with a spiral jacket in the side wall has a scroll-shaped heat exchanger coil added to the upper part. The performance was compared between only the side and upper-side heating part through simulation using TRNSYS under the same weather conditions and initial conditions. As a result, the upper-side heating has a 4.2% advantage in solar fraction, but almost no increase in collector efficiency.

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

Development of Antifreeze Concentration Control device for Solar Heat Energy System (태양열에너지 시스템용 부동액 농도 제어 장치의 개발)

  • Seo, Choong-Kil;Won, Joung Wun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.

A Novel Active Clamp Switching Method To Improve of Efficiency For Photovoltaic MIC (태양광 MIC 시스템의 효율향상을 위한 새로운 Active Clamp 스위칭 기법)

  • Park, Byung-Chul;Park, Ji-Ho;Song, Sung-Geun;Park, Sung-Jun;Shin, Joong-Rin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.477-484
    • /
    • 2013
  • This paper proposes a novel switching method of active clamp snubber for efficiency improvement of PV module integrated converter(MIC) system. Recently, MIC solar system is researched about the efficiency and safety. PV MIC system is used active clamp method of snubber circuit for the price and reliability of the system. But active clamp snubber circuit has the disadvantage that system efficiency is decreased for switch operating time because of heat loss of resonant between snubber capacitor and leakage inductance. To solve this problem, this paper proposes a novel switching method of the active clamp. The proposed method is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time and through simulations and experiments proved the validity.

An Experimental Study on the Availability of Underground Air Energy Source in Non-Activity Volcanic Island (비활성 화산지역의 지중공기열원 에너지 이용에 관한 실험적 연구)

  • Kim, Yong-Hwan;Park, Sung-Seek;Kim, Woo-Jung;Kim, Nam-Jin;Hyun, Myung-Taek
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.73-80
    • /
    • 2014
  • This study introduces and analyzes the geothermal energy availability in Non-active volcanic region. Jeju island in Korea is situated in non-active volcanic region. The island is composed of rock with high pore and clinker, scoria geological layer formed by volcanic activity about two million ago. Volcanic geological layers with porous characteristics have air, vapor, water and a underground structure through which air or water can move easily. For this reason, it is probable that the mechanism of energy acquisition is by convective heat transfer. For this presumption, the availability of underground air as energy source has been studied here through theoretical analysis and experimental data. The energy output of our system ranged from 2,485,076 kJ/day to 4,060,978 kJ/day monitored using variable velocity air flow controller. Our system has capability to be a reliable energy source irrespective of environmental changes. Consequently, underground air can be utilized for energy source and provide the optimal design of heating/cooling system.

An Active Battery Charge Management Scheme with Predicting Power Generation in ESS (에너지저장시스템에서 발전량 예측을 통한 능동적 배터리 충전 관리 방안)

  • Kim, Jung-Jun;Chae, Beom-Seok;Lee, Young-Kwan;Cho, Ki-Hwan
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • Along with increasing the renewable energy utilization, many researches have paid attention on the utilization and efficiency of energy storage systems. Especially, it is required an operational model in order to actively respond with each system's failure of sub-systems in the solar energy storage system. This paper proposes an energy management scheme by estimating the newly generated power based on the solar power generation samples. With comparing the estimated battery charging power in real time and the total charging power of the battery rack, a charge model is applied to adjust the charging power, As a result, the stability of energy storage system would be improved by suppressing the battery heat while maintaining battery C-Rate.

A Study on Thermal Performance of the Heat Recovery Ventilator used Window (창호적용 배열회수 환기유닛의 열성능평가 연구)

  • Jang, Cheol-Yong;Cho, Soo;Sung, Uk-Joo;Lee, Jin-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.129-134
    • /
    • 2008
  • Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. And, recently the use of heat recovery ventilator has increased rapidly for improvement of air Quality and energy saving in building. But, the high efficient heat exchange will be more increasable than water vapors which were only occurred residential active. Purpose of this study is measurement of thermal performance about heat-recovery system integrated window. The result of the window thermal resistance is 1.80 $W/m^2K$ by KS F 2278. Air tightness is 5.96 m3/m2h at 4 Pa by KS F 2292.

  • PDF

A study on the PAL according to thermal characteristic of building skin and perimeter zone depth (건물 외피의 열특성과 외주부 깊이에 따른 PAL에 관한 연구)

  • Kim, Ji-Hye;Kim, Hwan-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.33-38
    • /
    • 2010
  • The perimeter zone is space which receives a significant effect of ambient condition, it is necessary to improve the thermal performance in order to building energy saving. For this reason, a lot of study about the active approach is being performed, such as perimeter-less air conditioning system. But the performance of the perimeter zone is necessary to improve, through the passive approach. Therefore, the purpose of this study is to provide basic materials of energy-saving design of perimeter zone, based of the PAL that simulation changing the thickness of insulation and the rate of windows.

The Study Of Optimum Method About The Architecture, Construction, And Maintenance Through The Construction Of Zero Energy House (제로 에너지 하우스 구축을 통한 설계, 시공, 유지관리 최적 방안에 관한 연구 및 제안)

  • Kim, Sun-Geun;Kwon, Soon-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.42-50
    • /
    • 2014
  • In the thesis, the case of zero energy house construction applied with various Active factors and Passive factors which is the real residence as a standard not a normal experimental residence was evaluated, analyzed, and organized. The thesis can be the base data to construct another similar case of zero energy house.

The Study on Activity Star Problem and Optimum Construction Method Through the Defect Case of Zero Energy House in the Existing Building (기축건물의 제로에너지 하우스 하자 사례를 통한 공종별 문제점 및 최적구축 방안에 관한 연구)

  • Kim, Sun-Geun;Kwon, Soon-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.262-270
    • /
    • 2015
  • In this paper existing buildings, not a new buildings and house for living people not just a displaying and a viewing, created by the imagine effect or virtual simulation was applied various Active and Passive elements. After constructing zero-energy houses, through default case happened during operation period it is described problems and solutions about field part, work classification, installation by Location part, and Installation equipment part. Since then, to take advantage of this thesis, it's the purpose of this paper using as the baseline data for building a zero-energy house in another similar case.