• Title/Summary/Keyword: Acoustic Parameter

Search Result 416, Processing Time 0.029 seconds

Identification of Nonlinear Parameters of Electrodynamic Direct-Radiator Loudspeaker with Output Noise (출력 소음을 고려한 직접방사형 라우드스피커의 비선형 매개변수 규명)

  • 박석태;홍석윤
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.887-899
    • /
    • 1998
  • It has been resulted that Lagrange multiplier method with statistical approach was superior to traditional harmonic balance method in identifying the nonlinear loudspeaker parameters when output signals were contaminated with Gaussian random noise. We have known that the displacement-dependent characteristic values of nonlinear parameters identified by traditional harmonic balance method were estimated less than original values by the increase of output noise and the stiffness coefficients were very sensitive to output noise. Also, by the sensitivity analysis we have verified that the harmonic distortions in acoustic radiation was mainly due to nonlinearity of force factor caused by uneven magnetic fields and that reducing the nonlinearity of damping coefficients were very effective for improving second harmonic distrotion of acoustic radiation.

  • PDF

On the Transmission Loss Measurement System (전달손실계수 측정시스템에 대하여)

  • Yunseon RYU;Yoon-Seok KIM;Philippe CALLEC
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.323.1-323
    • /
    • 2002
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system usiong 4-microphone impedance tube is proposed, based on the idea calculating the full transger matrix of the acoustical sample to test. The theoretical backgroung and measurement system are introduced, and finally the measurement results are verified.

  • PDF

Hybridal Analysis of High-Frequency Combustion Instability with Pressure-Coupled Combustion Response Model (압력섭동과 연관된 연소응답모델에 기초한 고주파 연소불안정의 이론-수치적 고찰)

  • 윤웅섭;이길용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.253-257
    • /
    • 2003
  • Theoretical-numerical analysis of wave instability is conducted with parametric response function model. Fluctuating instantaneous mass evaporation rate functionally coupled with pressure perturbations with phase lag is assumed to examine the validity of the method. With sufficiently large amplitude and less phase lag to perturbation, combustion response is resonant to pressure waves, unstable waves are amplified, and the system is driven to instability. Magnitude of response is a crucial instability parameter in the determination of a stability margins and makes a critical change of balancing conditions between the amplifying and damping acoustic energies. In the phase regime the unstable waves are amplified, whereas, the acoustic waves are attenuated in the out-of-phase regime. In the intermediate regime, no distinct tendency of unstable waves was determined.

  • PDF

Axisymmetrical free-vibration analysis of liquid-storage tanks considering the liquid compressibility

  • Cho, Jin-Rae;Lee, Jin-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.355-368
    • /
    • 2002
  • In this paper, we address the numerical investigation on the effect of liquid compressibility onto the natural frequency of liquid-filled containers. Traditionally the liquid motion has been treated as an ideal fluid motion. However, from the numerical experiments for the axisymmetrical free-vibration of cylindrical liquid-storage tanks, we found that the relative difference in natural frequencies between ideal and compressible motions becomes remarkable, as the slenderness of tank or the relative liquid-fill height becomes larger. Therefore, in such cases of dynamic systems, the liquid compressibility becomes an important parameter, for the accurate vibration analysis. For the free-vibration analysis of compressible liquid-structure interaction we employed the coupled finite element formulation expressed in terms of the acoustic wave pressure and the structure deformation.

Damping Layout Optimization to Reduce Structure-borne Noises in a Two-Dimensional Cavity (이차원 공동의 구조기인소음 저감을 위한 제진재의 최적배치)

  • Lee Doo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.805-812
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of unconstrained damping materials. For the analysis of structural-acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics oJ the viscoelastic materials with frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

  • PDF

Parametric Analysis of Slamming Forces: Compressible and Incompressible Phases

  • Campana, E.F.;Carcaterra, A.;Ciappi, E.;Iafrati, A.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2000
  • The slamming force occurring in the free fall impact of cylindrical bodies on the water surface is analyzed in both compressible and incompressible stages. In the compressible phase the hydrodynamic analysis is carried on by the acoustic approximation, obtaining a closed form expression for the maximum impact force. The incompressible analysis is approached through and unsteady boundary element method to compute the free surface evolution and the slamming force on the body. A similar behavior seems to characterize the maximum slamming force versus a dimensionless mass parameter.

  • PDF

SPATIAL EXPLANATIONS OF SPEECH PERCEPTION: A STUDY OF FRICATIVES

  • Choo, Won;Mark Huckvale
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.399-403
    • /
    • 1996
  • This paper addresses issues of perceptual constancy in speech perception through the use of a spatial metaphor for speech sound identity as opposed to a more conventional characterisation with multiple interacting acoustic cues. This spatial representation leads to a correlation between phonetic, acoustic and auditory analyses of speech sounds which can serve as the basis for a model of speech perception based on the general auditory characteristics of sounds. The correlations between the phonetic, perceptual and auditory spaces of the set of English voiceless fricatives /f $\theta$ s $\int$ h / are investigated. The results show that the perception of fricative segments may be explained in terms of 2-dimensional auditory space in which each segment occupies a region. The dimensions of the space were found to be the frequency of the main spectral peak and the 'peakiness' of spectra. These results support the view that perception of a segment is based on its occupancy of a multi-dimensional parameter space. In this way, final perceptual decisions on segments can be postponed until higher level constraints can also be met.

  • PDF

Fracture behavior using AE method and reliability assessment of CFRP based on absorbed moisture (흡습된 CFRP의 AE에 의한 파과거동과 신뢰성 평가)

  • 남기우;김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.38-50
    • /
    • 1996
  • Recently carbon fiber reinforced plastic (CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and pipes. However, mechanical properties of such materials may be change when CFRP and exposed to corrosive environment for long periods of time. The degradation behavior of carbon fiber/epoxy resin composite material in distilled water is investigated using acoustic emission (AE) technique, Fracture toughness tests are performed on the compact tension specimens that are pilled by two types of $[O_2/9O_2]_{3s}$ and $[O/9O]_6s$. During the testes, AE test was carried out to monitor the damage of CFRP by moisture absorption. The data was treated by 2-parameter Weibull distribution and the fracture surface was observed by scanning electron microscope.

  • PDF

Acoustic Emission Measurement on the Composite Material (CFRP) (복합재료 시험편에서의 AE 발생 특성에 관한 연구)

  • 최만용
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.21-27
    • /
    • 1991
  • Acoustic Emission was monitored during tensile test and loading-holding-unloa-ding cycle test for two types (notched and unnotched) of CFRP specimens. AE activities showed that the fiber breakage during tensile tests depended upon the specimen geometry. We obtained new AE parameter such as the ration (damage ratio= AE events during unloading test / AE events during loading test) and the felicity ratio from which we investigated dynamic fracture process of CFRP specimens. The damage ratio of AE events was shown to be a good indicator to distinguish the generated fracture mechanism, such as fiber breakage and delamination. Also, ultrasonic testing results after loading-holding-unloading cycle test were good agreement with AE test results to detect defects or fiber breakage.

  • PDF

The Filtered-x Least Mean Fourth Algorithm for Active Noise Control and Its Convergence Analysis

  • Lee, Kang-Seung;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.66-73
    • /
    • 1996
  • In this paper, we propose the filtered-x least mean fourth (LMF) algorithm where the error raised to the power of four is minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. Application of the filtered-x LMF adaptive filter to active noise control(ANC) requires estimating of the transfer characteristic of the acoustic path between the output and error signal of the adaptive controller. The results of the convergence analysis of the filtered-x LMF algorithm indicates that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that convergence behavior can differ depending on the relative sizes of the Gaussian measurement noise and convergence constant.

  • PDF