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The Filtered-x Least Mean Fourth Algorithm

for Active Noise Control and Its Convergence Analysis

*Kang Seung Lee and **Dae Hee Youn

Abstract

In this paper, we proposc the fillered-x leasl mean fourth (LMF) algorithm where the crror raised to the power of four is

minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian mcasurcment noise.

Application of the filtered-x LMF adaplive {ilter to active noise control (ANC) requires estimating of the transfer charac-

teristic of the acoustic path betwcen the outpul and error signal of the adaplive controller. The results of the convergence

analysis of the filtered-x LMF algorithm indicales that the cffects of the parameter estimation inaccuracy on the conver-

gence behavior of the algorithm are characterized by two distinct componenls: Phase cstimation crror and cstimated gain.

In particular, the convergence is shown (o be strongly affected by the accuracy of the phase response estimate. Also, we

newly show thal convergence behavior can differ depending on the relative sizes of the Gausstan measurement noise and

convergence coustant.

I . Introduction

In aclive noise conlrol, the acoustic noise 1o be can-
celled is often peneraled by rotating machines and thus
can be modeled as the sum of a fundamental sinusoid
and its harmonics. In this paper we arc concerned with
cancellation of fan noise based on ANC fllering. Fan
notsc is frequenily generaled in the consumer clectronic
products such as air conditioners, vacuum cleancrs and so
on. Adaplive approaches have widely been used in ANC
applications in which the unwanted noise sound is
adaptively synihesized with the cqual amplitude but
opposite phase, resulting in the canccllation of the acoustic
noise as shown in Fig. ("2 In Fig. |, the input microphone
can be replaced by other non-acoustical sensors such as
tachomelers or accelerometers in which casc the possi-
bility of the speaker oulput feedback to the input micro-
phone is removed. The adaptive lilter output drives the
loudspeaker in such a way that (hc acousiic noisc and the
loudspcaker outpul can be summced to null al the crror
microphone.

Although any adaplive algorithm can be used in Fig. 1,
the lcast mean square {LMS) algorithm has been (he most
popular one™ [ has recently been found that the LMF

algorithm in which the error raised to the power of four
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is minimized has better convergence propertics'. It is
noled, however, that the direct application of the LMS
algorithm in Fig. 1 is not appropriale. The reason is that
the acoustic path between the filter output and sum-
malion point of the error signal is frequency scnsitive,
which acls to distort .lhe phase and magnitude of lhe
error signal. In turn, the distortion of the phase and mag-
nilude in the error path can degrade 1he convergence per-
formance of the [.LMS algorithm. As a result, the conver-
gence rate is lowered, the residual error is increased, and
the algorithm can cven become unstable. For these reasouns,
it is necessary 1o use the so-called Fillered-x LMS algor-
ithm® for which the transler characleristics between the
oulput and Lhe error signal of the adaplive controller
must be estimated.

In this paper, we propose a new filtered-x LMF algor-
ithm for aclive cancellation of fun noise. It is noted that
the fan noise can he modeled as the sum of a fundamen-
tal sinusosd and ity harmonics. We first derive an adapt-
ive canceller structure and then analyze ils convergence
behavior when the acoustic noise can be modcled as the
sum of a fundamental sinusoid and its harmonics. The
convergenee analysis is focused on the cffects of par-

ameler estimation inaccuracy on the performance.
. ANC System Model and Algorithm

Since the loudspeakes-air-microphone path of Fig. | is
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Figure 1. Basic adaptive aclive noise controller configuralion.
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Figure 2. Rearranged form of the controller under linear system

condilion,

linear, onc can casily gel the equivalent system as shown
in Fig. 2. When Lhe noise consists of the multiple sinusoids,
which 1s the case of fan noise, lthe acoustic and loud-
speaker-acoustic-microphone can be described by the
multiple in-phase (/) and quadrature (() weights as shown
in the upper branch of Fig. 3.

For the m-lth stnusoidal noise, the adaptive canceller
struclure also becomes to have two weights w; ,,{#) and
wp. m(n), with 1 and Q inputs, x; ,,(m) and 1y ,.(n),
respectively. Thus the outpul of the m-(h controller, y,,

{(n) is expressed as
Ymlny=1w, () x; ,, (0} + g 0 (32) Wy (1)} (1)
where

X m(91) = A cOS (et + $,) 2 A, cos P, (30),
X m(1) = Ay Sin 7t + ) S Ay sin ¥, (30),

.
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Figure 3. The diagram of adaptive active noise controller system
under study.

me:branch index =1, 2,3 .., M,
n:discrete time index,

A ramphtude,

@:nomalized frequency,

¥ random phase.

Also, refernng (o the notation in Fig. 3, the error signal ¢ (3)

is represented by

M
emy=Y [¢; mermm) + Co.m 8o, mm)] + nin}
m=4
M
= = 3 Al Cpm 08 W () + o sin ¥, ()] Lowy (1) — 207 0}
m=)
M
=5 Al Chom S0 o (2) —Cp m cOS W (I { 1, (1) — 20,
m=1
by (n) (2)
where

M
emEe =Y {d (1) —yu(n),
1

™=

;@{n) 190" phase-shifted version of e,(n)

n{x} *zero-mean measurement noise.
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Assuming thal w; (M) and wy (z} are slowly
time-varying as compared 10 Yew; »(n) and xy (%), the
phasc-shifted culput is giver from (1) by

M
Yo=Y {wy (1) Xy () =0y n(0) 2, (m)}

=1

Mz

= 3 Anlwy () sin ¥, (n) —wy (1) cos ¥ (n)k. (3}
)

It can be shown from (1)}, {2} and (3} thal minimizing
the fourth power crror and wsing a gradiest-descent
method yields [3] a pair of the flillcred-x LMF weighl

updale cquations lor cach m2 as

Wy 1) =y (1) + k™ (1) () ¥ ) + €0 X, m(M

Wy it T1) = ttiy (1) + k™7 () (€)X, (M) —Co ¥, (M)}
(4)

where m= 1, 2,.... M and i, 15 a convergence constant,

It is noted that to implement the filtered-x LMF algor-
ithm of {4}, the values of ¢;_,, and ¢p_ » must be estimated.
In the following, we tanalyze the elfects of replacing ¢, ,,
and ¢y, in {4) with (:',. e and E(L m on Lhe convergence
behavior of the canceller.

Il. Convergence Analysis

A. The mean of weight error{Magnitude)

To se¢ how the adaplive algorithm derived in (4)
canverges for inaccurale (, e AN (T'Q. o W [irst invesligate
the converpence of the expected values of the adaptive
weights. To simplify the convergence cqualion, we may

introduce two weight errors as

Fay
Oy, (1) = 201 1 (92) = 10} 1,

2o, m) 2w {0} =W m. (5)
Then, from (2}, {5) and Fig. 3, we get

€1 m() = — 05 (1) Xp () =0 () Xp (B},

2@_ mn)= — L wl?t) Xy, min}+ Vo, m(3) X1 m(72). ©)
Inscrting (5} into {4), we have

Vim0t 411 =07 01) + 24200 €5 (1) 1y e X1 m(B) F G e X ()L,

Vg w2+ 1)= g, (1) + 2110 €0 161 X ) = Cop o X ). (7)

Rearranging (7) with (2} and (6), laking expectation of
hoth sides of the resultant two weight-crror equations, we
can get the convergence equation bascd on lhe indepen-

dent assumption on the underying signal; x,, (%), 7(n), 2; .
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and vy,

The Moment terms of order grealer than 1 decrease
much faster than the first order moment lerm in E{v; ,,(#)]
and Elvy m{n)l. Therefore, ignoring the moment lerms

order grealer than |, the convergence equalion becomes

Ely min+1)

8
Elvg mn+1) ®

;(am B

—fn X

E[ yl, m(n)l ]
EI Vo, m(n]]

where

PR “Mim A Em Eom olcos O O,

P =1 =3 ptm A%, Bon B 2810 D O, .

llere, defining gain and phase response parameters as
i \2 o2

o = \/(’[_ ” + C(). m’

- Al -2 -2
A NG

C,

A _ Gom
0 Zan!

om ( Cr.om

- C
~ Q.m
O Ctan '
Cim

AN 04'. mé 0(. m_or, "

Now, using the similarity transform to make Elv; ,.(#))
and E(2g m(#) in decoupled forms, (8) can be expressed

as follows,

Efo, w0l
E[ Vo m[n}l

l!-.'[:;,.m(n 10 )

Elvg, m(n +1)

1 '.li.m 0
0 1-Apn

where
R ™ Ml AL i £ 031008 D0 & 7 5in AQ, ) 1= 1 Q.

Since Az w10 (9) is a complex number, the transformed
weight error is also complex. When a complex number is
given, we consider ils rcal and imaginary parts individu-
ally or investigate (he convergence of magnilude of

trunsformed weight error,
[Elv; Gt 01 = 1= 2l Ely ], £=10 Q. {10}
As it is clearly scen in{10), (he magnitude of weight

error  converges  exponcntially to 0 under following

conditions.

=2 m (L i, i=1Q. (L



The Fillered-x Least Mean Fourth Algorithm for Active Noisc Controt and s Convergence Analysis 69

Squaring both sides of(11) and rearranging the ierms,

the stabilizing condition are oblained.

2c08 OO0y

0 thn € -—
34 8n&mol

or 0(X, /{1 (12)

where

o 3ﬂm A;gm Em 0',2,

mf= T 2008 Al

We see that stabilizing condition of (12}, unlike the
filtered-x LMS, is affected by variance of measurement
noisc signal™. In a sufficicntly lurge time consiant ¢
domain, timc constant ¢ for exponenlial convergence can

be simplificd and is derived!™.

1
Tim

==&l i=1 Q. (3)

e_‘/f’;"‘ = 1-

From (10) and (13) the lime constant is

T, = T —.- :‘_T e L~ ...'_.T‘\_'_'
l I = A/ L =6in A B gmlcos A0 tIuL AL &7 81 0
1=1 0
(14)

l
1= N1 =4 Xy, (1 =X ) cOS? A0

B. Summed variance of weight errors

Next we investigate thc convergence of the mean-square
error (MSE), E[e%(n)]. Using (2) and (6), we can express
the MSE as

M
Ele*m]=% el () + ai
m=1

M
Y 4

s e
2w ™

ém(”) + 0: (15)
where

Emm) E 10} () +E] Vg w2,

24 pr .2
Un—[:[rj

From (15), we find that studying the convergence of
MSE is directly related to studying the sum of ¢&,(n).
Inscrling (1} and (2) into (5), and assuming that input signal
x,.(n), mecasure noise n(xn), and weight ervors v; (), Vo m
() are independent of cach other, we take the statislical
average of both sides Lo obtain two equations for E{z?
Gr+ 1, E[v} (n+1)). Since therc two equations are

symmetrical, we add them and assume that Elv](n +1)]

;E[vé (7 +1)]. Thus, climinating the subscripls 7 and Q
1o simplify the second moment equation of weight error

and rcarranging the terms yields

Elvl(z+1)]

= AL L 8BNS, ] 4 3L, (B, o)

3 - .
— Hm AL &) g cos DO L Elv) ()] +(E[v] (m))7)

93 42 g gt 82 B o) B )+ (E Lo, 0 ?)

1 =6t A2 Loy B ELRT D] cOS A0,
+3042 4% g2 &% Eln* m)]} £|v} (n)]

+ 242 AL g2 E(n®n)). (16)

Assuming that y(n} is a Gaussian with zere average
and w; (1), wy (7)) are Gaussian variables, .0} s
also a Gausstan variable. Thus, (16) can be simplificd by
expressing E|v2X(n)] as Elvl, (0} Although Elv,(n)
decreases very rapidly, it is no zero from 1he beginning.
Thus, a Ganssian random variable &w,,(32) with zero

average, and its variance arc adapted as follows:

AW, (7) 2 vp(n) —Vu(n),

El vf”(n)l = V»‘: (o + pfn (») an

where V(1) 2 E|v,(n)].

p;’n(n) LElatw, )

From (17), we find thal during the transient state, ic.
from heginning to the moment just beforc the steady
state, p; (n) is much smaller than V’: {n) and E[v,(2)]
can be regarded as V2 (#n). On the olher hand, p} ()
becomes dominant over V2 (») in the steady slate and £
[0 can be regarded as p2 (#). Now, apply (17) to
(16} and usc the relationship hetween E|v2*(m)) and £
[v; ()] of the Gaussian random variable® (o arrive at

the following equation.

Vim+1)+pl{n+1)
=Sl At gs gLV m)+9p2 ) VA + 18 gt () V. 2mb+ 6 pf ()
—(3i,m A;’”g:" g,,, cos A0 m—454, A“m;,';’"g; O':)
VAm + 4 p2 ) Vi) + 2 p? ()
(1 =6pt AL, B g;mo:cos Al e+ 90;13',(4:'5,';5::‘0:}
Wiz + pl (n)}

+30 p2 4,82 0" (8)
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{1} Convergence during the transient state
The convergence cquation (18) may be examined lor
2K (72) and the last term of {18)

»

two different cases, Firsl, p
can be removed for the transient slale. Thus, the transient
convergence cqualion (s given by

.

Vie+D =540 A% gb g; Vot

(i A2 82 8, cO5 AU, — 4542, A%, 11 g';a: ) Vi)

+ (4 -6p,, Aigm émozcus VAN I o ‘)Opfn A‘mg; g,;:la:] V"f(nl
a9

On the right side of (19). cither V5 () or ¥} ()
becomes a dominant term in extreme cascs. When the two

(erms have same values, we can wrile V”*:(nl as [ollow

.
Vo th=

\/l ~Optm AL ém af} €05 &0t 9042 AL 2 g; r;:;
Skp 80 8 20)

Notc (hat Ad, ,, does not affeel V3 4. In {19), the first
term ¥ (n) acts as (he dominant term when ¥ (n) is
greater (ham V5 45 IF 172 is smaller than Vg 4, then the
last Vm‘f (#} lerm bocomes dominant, Fig, 4 is given (o
ilustrale in lermns of the convergence constant pi,, and the
variance of measurement noise (r: , which of Lhe (wo
terms, the first term V2 () and the fast lerm ¥2(n), is
dominant when V,,i w2} =08 Pomt {a) is a region in
which the term V0 () dominates over the other and poinl
(b) is when V"'l (#) lerm is the dominant one. Therefore,

Lhe transicnl convergence equation (19) can be writlen as:

o
@

o
=3

<}
b

o
@

=3
5
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o
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teasurement Noise Variance
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| a8, increasing (‘
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Figure 4 Dominam term decision dagram for filtered-x L.MF
algorithm ol summed variance of weight crrors al the

(ransicnl-stale.
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Vimd 1=
S Al gt g,;z Vo (n)

m on

Wiy » Vi (21a)

(1 6t 42, 8o B 02608 200+ Wil AL £2.8267) V2 0)

VULV (2Ib)

Now, from (2la) we may derive the condilions (or
slubility and the time conslant by rewriting il as

" ]1_:-..11;‘7.

Vimh= {5l A gt g oY

I = ~ -
S , . .4 ..] PR \‘/5 . A;‘g:‘ g,..V':{U)}‘ ] 22)
AVARI TP A,,,g,'" Em
Thus, {22) is stable under the following condition:
| VS m AL &2 2 VO,
|
0 pam! 3

VS AL gmV20)

Noute from the conditions Tor stability in (23) that the
initial value of weight error acts as a limiling facior,
along with the amphitude of input signal, the gain of the
sccondary path and the estimaled gain of the secondary
path. And, (21b) is stabilized when it satisfies the con-
dition below !
€os &0 m

0( u’”( R

. SO 0 X {1
15 A, B lm o,

{24)

where

15 ey, mA:"gm Lom 0';
Xm\x= .. AT
cos A,

From (13) and (21b), the time constant is given by

1

Ostos Ay B Bim 0y 1608 NOe = 1Sy A o 8 0]}

5

(25)
{2) Convergence in the steady state
In the steady state. V2 {n) becomes sufficiently smali
and he terms thal include g} () and p’ (1) can be
ignored in the convergence equation (18). The cquation is

then simplified as

P2 )= (1 -6t A2 o é,,, aﬁcos AN/

LT B R
+00 4 A 20 gmaq] ol 1)
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; 326
+30 ) A% & 80 (26}
And, the summed varniance of weight crrors in the
steady state, &,{(0) is 2 po(0) and it can be written as
104y &m o,

-fm(co)=2 Pm(w)= -
Em €08 DO =15 i AL, & B 0}

267 X, s
ARG il 27
34— Xom )

{3) Comparison of the FXLMF and FXLMS algorthm

Comparing the performance of adaptive algorithms
usually involves two methods. The first method is to
comparc the slate of convergence after selting equal
values for the sleady state. and the other one iavolves
comparing lhe steady state values for same rate of con-
vergence.

Like {18) in [8] the summed variance of weight errors
of the FXLMS algorithm is & geometric series and the
time constant can be defined while (hat of the FXLMF
algorithm (18) is nol a geomctric series and therefore, the
time constant may not be defined. Then we set the steady
stale values of the two algorithms cqual and compare the
convergence rates. From (27} and (20} in (8] we obtain
following equation.

Wpry m Lo ”i

Em {cos AOr,m_ls ey m A;gm ém ”;lt

- 2
Hse.m Bm 0,

Hsxm AL B L (9—cos 2 A0,
(28)
where pp, s and jg, ., ate the convergence constants of
FXLMF and FXLMS algorithms, respectively.

When the convergence constants ptry . and fise m

[
Al ——
Emicos DO 16

salisfy the stability conditions, the second terms on bolh
sides of (28) are sufliciently smaller than the firsl terms

and they are ignored (o yield the following equation.
i
Bex m= Kezm (29)
IV. Computer Simulation

In this section, we present the results oblained from
computer simulation along with the theoretical analysis of
FXLMF algoritlhm in the previous seclion.

case 1. the convergence property of FXLMF algorithm.

case 2. the performance comparison of FXLMF and
FXLMS.

We set the frequencics ol the first and sccond sinus-
oidal signal a1 120 Hz and 240 Hz, respectively, and selec-
ted 2 KMz lor sampling frequency. The inpul signat x {7}
and desired signal & (») are given by

2
x(m)=3 A, coslwnn +¢,)
m |l
240 n n

Sy A0 T A A ey 30T
= /2 tcos € soog I FeosC ST g,

3

d) =3 (W} 0 Xyt Wy X !}
me)
=06 x;, (1} =0.1 xp () +0.3 x; (0}~ 0.3 xp (). (30)

The sccondary path is modeled as g, =g;=1 8, ,=45"
and 6, ,=45". The simulalion was carried out by sciting

0.001 and 1 as the variances of measurement noise p; .
And the initial value of weights is zero. The simulation
results were obtatned by ensemble uveraging 1000 inde-

pendent runs,

1.the convergence property of FXLMF algorithm

Fig. 5. showed he summed variance convergence curve
of weight error lor the FXLMF algorithm that resulicd
{rom the simulation when gy, =02, p: =0.0601, and |
0. 11 =15". We sce that ¥ 2(#) is thc dominant lerm duc-
ing the transicnt state whercas p?{n) hecomes dominant
during the stcady state.

Fig. 6. showed the summed variance convergence curye
of wcight crror that resulted from the simulation when
the phase estimation crror A0, | is (1) 07, (2) 457, (D)
60°, (4) 75" under Lhe same value in the steady slate. It

— & (n)
-10 0000 © Vi (m)+ Vi (n)

wrrs sph (n) 0%, (0)

Log Scale [dB)

76 : x4 " n A "
1000 2000 3000 4000 5000 6000 7000 €000
Number of Adaptalions

Figure 5. Learning curves for FXLMF algorithm of summed vari-
ance of weight errors when the convergence behavior are
divided between V4 (1) and p* ()
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Figure 6. Learning <urves for [lillered-x LMF  algoritlhm  of
summed variance of weight crrars{up.=0.2. p7 =0.001)
IV ING ml =07 2 [0, | =45° D 1AM ] = 60"
(@) (A0, ] =75

can be seen that the larger phase estimation error is, the
slower the convergence speed is, and thatl the sleady-state

value is not affected by the phase cstimation error 140, |

2. the comparison of FXLMF and FXLMS

Wc  have compared the convergence hchavior of
FXLMEF algorithm and FXLMS
through simulalion. The convergenee speed of the 1wo

that of algorithm

algorithm were compared aller sclting the stcady-state
values cqual. The convergence constants of FXLMF and

FXLMS algorithm were carefully chosen so that they

0 . e T T T

~—— Filtered-x LMF

4

+ ¢ Riltered-x LMS

v

10 log .é.xf- (n) (dB)

-60

L

1000 2000 3000 4000 5000 6000 7000  BOGO

Number of Adaplations

Figure 7. Comparison of the FXLMS and FXLMF algorithm
learning curves of The summed vatiance of weighl crrors.
s =0.002, pp, =02, af' =0.001, 40, ) =45", and
Vi =0.558.
(b sy = 0.002, pte, =0.0002, ai =1, 140, | =45, and
Vi, =558.
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salisfy the conditions given in (29) lor a given vasiance of
measurement signal. To be specific, we selecled 0.2 and
00002 for pp, lo make Lhe sleady-stale values of two
algonthm equal when pi is given as 0.001 and 1 and pg,
is 0402,

In Fig. 7, the convergence behavior curves of summed
variance ol weight error obtained from simulation are
compared with cach other when lhe phase estimation
error | A0, .| is 457 When ¥} is sufficienlly smaller
we see (hat imtially, the FXLMF algornithm
converges much faster than the FXLMS algorithm but

than |,

converges linearly on the logarithmic scale as the FXLMS
algorithm docs. When V) is very large, however, the
FXLMF algorithm converges lincarly and more slowly
than the FXLMS algorithm.

V. Conclusion

The convergence result of the filtered-x LMF algorithm
indicales that the efTects ol the parameler estimalion inac-
curacy on (he convergence behavior of the algorithm are
characterized by 1wo distinct components: Phase csti-
malion error and estimated gan, In particular, the con-
vergence has been shown to be strongly affected by the
accuracy ol the phasc response cstimale. Also, it has been
found (hat the mean square convergence behavior can
dilfer depending on the power of Gaussian measurement
nois¢ and the size of convergence constants. Accordingly,
the transient behavior can be characterized by onc of the
two cases:{1) initially, the Filtered-x LMF algotithm
converges much laster than the FXLMS, bul soon after
that, it converges almost lineacly on logarithmic scale like
the FXLMS algorithm;(2) the FXLMF algomthm
converges lincarly and at a slower raic than the FXLMS.
To sum up, different convergence behavior was observed
depending on (he variance of Gaussian mcasurement

noisc and the magnitude of convergence constant.
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