• Title/Summary/Keyword: Acceleration time

Search Result 2,044, Processing Time 0.026 seconds

CFD ANALYSIS FOR HYDROGEN FLAME ACCELERATION IN THE IRWST ANNULUS TEST FACILITY (IRWST 환형관 실험장치 내의 수소화염 가속현상에 대한 CFD 해석 연구)

  • Kang, H.S.;Ha, K.S.;Kim, S.B.;Hong, S.W.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.75-86
    • /
    • 2012
  • We developed a preliminary CFD analysis methodology to predict a pressure build up due to hydrogen flame acceleration in the APR1400 IRWST on the basis of CFD analysis results for test data of hydrogen flame acceleration in a scaled-down test facility performed by Korea Atomic Energy Research Institute. We found out that ANSYS CFX-13 with a combustion model of the so-called turbulent flame closure and a model constant of A = 5.0, a grid model with a hexahedral cell length of 5.0 mm, and a time step size of $1.0{\times}10^{-5}$ s can be a useful tool to predict the pressure build up due to the hydrogen flame acceleration in the test results. Through the comparison of the simulated results with the test results, we found out that the proposed CFD analysis methodology enables us to predict the peak pressure within an error range of about ${\pm}29%$ for the hydrogen concentration of 19.5%. However, the error ranges of the peak pressure for the hydrogen concentration of 15.4% and 18.6% were about 66% and 51%, respectively. To reduce the error ranges in case of the hydrogen concentration of 15.4% and 18.6%, some uncertainties of the test conditions should be clarified. In addition, an investigation for a possibility of flame extinction in the test results should be performed.

Picture Analysis of Motor Control's Property about the Motion of Stop-jirugi and Push-jirugi (끊어 지르기와 밀어 지르기 동작의 운동 제어적 특성에 대한 영상 분석)

  • Ahn, Jeong-Deok
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.244-252
    • /
    • 2008
  • This research differentiate the technique of Jungkwon-jirugi, one of the basic movements of Taekwondo, into two movements stop-jirugi and push-jirugi and gives analysis of the impulse, acceleration and velocity in the point of motor control. For this, we tried graphic analysis using an acceleration sensor and high speed camera which was made from USA in 2005 and took pictures at 250 frames per second. We reached the following conclusions. First, the acceleration wave of push-jirugi was a period longer than stop-jirugi, meaning that the push-jirugi motion asserts force for a longer time. Second, the acceleration and velocity graph shows that the highest velocity occurs on the point when the acceleration begins to decrease right after reaching its maximum. Third, according to the image analysis using the high speed camera, we could find out that the shoulder is pushed a little even in the stop-jirugi motion.

Estimation of Rail Irregularities by using Acceleration values (가속도 값을 이용한 궤도 불규칙도 검측)

  • Kim, Young-Mo;Park, Chan-Kyoung;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2173-2178
    • /
    • 2008
  • Railroad is the major factor of vibration source in railway vehicles, and it must carefully maintained the original condition to secure the safety and good ride comfort of passenger. Measuring the condition of rail irregularities such as surface, alignment, gauge, twist and cant etc is required to maintain the good performance of railroad. Currently, the various rail irregularity measurement systems(EM120, ROGER1000K and the Total Rail Irregularity Measurement system of Korea High Speed Train) are operated in Korea to estimate the rail irregularity. It is hard to verify the correlation of one rail irregularity data of a measurement system with the other, because they have been adopted different rail irregularity estimation methods. The best method securing the reliability of the irregularity data is the direct confirmation on the ground where the measurement system had detected as a fault section, but it is impossible to apply all sections simultaneously due to limitation of time, labor, cost and equipments. There is a method to secure the reliability of the data by using acceleration values. Rail irregularities, the major factor of vibration in railway vehicle, are transmitted to the vehicle acceleration through masses, springs, dampers and joints as the system dynamic formation. In this study, Transition Function has been adopted by using the rail irregularity and the acceleration value regarding as input & output parameters respectively. It has been verified by comparing the analyzed results with real measured irregularity data from the Total Rail Irregularity Measurement system of Korea High Speed Train. Also various methods has been accomplished to verify the correlation between rail irregularities and acceleration values.

  • PDF

Data Processing and Numerical Procedures Influencing on Occupant Risk Indices (탑승자 안전지수에 영향을 주는 데이터 처리과정과 수치절차)

  • Kim, Kee-Dong;Ko, Man-Gi;Nam, Min-Kyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.215-226
    • /
    • 2007
  • To verify the performance of roadside barriers, occupant risk indices are calculated from acceleration and angular velocity data of vehicle crash tests. The occupant risk indices to be computed include THIV(Theoretical Head Impact Velocity), PHD(Post-impact Head Deceleration), ASI(Acceleration Severity Index), OIV(Occupant Impact Velocity) and ORA(Occupant Ridedown Acceleration). There is a confusion due to different values of occupant risk indices produced for the same test data because various computational procedures and data processing methods can be applied to compute them. To slove this problem the effects of various numerical procedures and data processing methods on occupant risk indices were investigated. If the sampling rate specified in the guidelines is used for full-scale vehicle crash tests, an interpolation of impact time and numerical integration methods do not result in an appreciable change of THIV and OIV. The way to determine 10msec moving average for PHD and zero offset of data processing should be specified in the guidelines because 10msec moving average and zero offset methods have a significant influence on occupant risk indices.

  • PDF

Prediction of Failure Time of Tunnel Applying the Curve Fitting Techniques (곡선적합기법을 이용한 터널의 파괴시간 예측)

  • Yoon, Yong-Kyun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • The materials failure relation $\ddot{\Omega}=A{(\dot{\Omega})}^\alpha$ where $\Omega$ is a measurable quantity such as displacement and the dot superscript is the time derivative, may be used to analyze the accelerating creep of materials. Coefficients, A and $\alpha$, are determined by fitting given data sets. In this study, it is tried to predict the failure time of tunnel using the materials failure relation. Four fitting techniques of applying the materials failure relation are attempted to forecast a failure time. Log velocity versus log acceleration technique, log time versus log velocity technique, inverse velocity technique are based on the linear least squares fits and non-linear least squares technique utilizes the Levenberg-Marquardt algorithm. Since the log velocity versus log acceleration technique utilizes a logarithmic representation of the materials failure relation, it indicates the suitability of the materials failure relation applied to predict a failure time of tunnel. A linear correlation between log velocity and log acceleration appears satisfactory(R=0.84) and this represents that the materials failure relation is a suitable model for predicting a failure time of tunnel. Through comparing the real failure time of tunnel with the predicted failure times from four curve fittings, it is shown that the log time versus log velocity technique results in the best prediction.

Preconditioned Multistage Time Stepping for the Multigrid Method (다중 격자 기법을 위한 예조건화된 다단계 시간 전진 기법)

  • Kim Yoonsik;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.127-133
    • /
    • 2001
  • In this paper, the preconditioned multistage time stepping methods which are popular multigrid smoothers is studied for the compressible flow calculations. Fourier analysis on the local time stepping and block-Jacobi preconditioned residual operators is performed using the linearized 2-D Navier-Stokes equations. It fumed out that block-Jacobi preconditioner has better performance in eigenvalue clustering. They are implemented in the 2-D compressible Euler and Wavier-Stokes calculations with multigrid methods to verify that the block-Jacobi preconditioned multistage time stepping shows better performance in convergence acceleration.

  • PDF

Settling time of dental x-ray tube head after positioning (치과용 X-선 관구의 조정시간)

  • Yoon Suk-Ja;Kang Byung-Cheol;Wang Se-Myung;Koh Chang-Sung
    • Imaging Science in Dentistry
    • /
    • v.32 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • Purpose: The aim of this study was to introduce a method of obtaining the oscillation graphs of the dental x-ray tube heads relative to time using an accelerometer. Materials and Methods: An Accelerometer, Piezotron type 8704B25 (Kistler Instrument Co., Amherst, NY, USA) was utilized to measure the horizontal oscillation of the x-ray tube head immediately after positioning the tube head for an intraoral radiograph. The signal from the sensor was transferred to a dynamic signal analyzer, which displayed the magnitude of the acceleration on the Y-axis and time lapse on the X -axis. The horizontal oscillation of the tube head was measured relative to time, and the settling time was also determined on the basis of the acceleration graphs for 6 wall type, 5 floor-fixed type, and 4 mobile type dental x-ray machines. Results : The oscillation graphs showed that tube head movement decreased rapidly over time. The settling time varied with x-ray machine types. Wall-type x-ray machines had a settling time of up to 6 seconds, 5 seconds for fixed floor-types, and 1 I seconds for the mobile-types. Conclusion: Using an accelerometer, we obtained the oscillation graphs of the dental x-ray tube head relative to time. The oscillation graph with time can guide the operator to decide upon the optimum exposure moment after x-ray tube head positioning for better radiographic resolution.

  • PDF

A Study on Process Characterization based on Vibration Signals Transmitted to the Mold in the Press Molding Process (프레스성형공정에서 금형에 전달되는 진동 신호에 기반한 공정특성 분석에 대한 연구)

  • Junhan Lee;Jongsun Kim
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2023
  • In this study, the vibration signal of the mold was measured and analyzed to monitor the process information and characteristics during the press molding process. A necklace-type picture frame mold was used for press molding, and the vibration signal was measured by GY-61 acceleration sensor module attached to the surface of the upper (movable) mold base. The change of the vibration signal of the mold according to press speed was analyzed. As a result, the vibration signal had a large change at five sections: "Holder contact", "Punch contact and start of pressing", "End of pressing", "Mold open", and "Demolding". The time difference between "Punch contact and start of pressing" and "End of pressing" means the pressing time which is the actual time the material is molded under pressing pressure. The time intervals for each section, represented by the time interval between "Holder contact" and "Punch contact and start of pressing", can be used to compare and evaluate the press speed applied to the process. By comparing the vibration signals at 60 rpm and 90 rpm, the amplitude at the section of "Punch contact and start of pressing" increased as the press speed increased. This result means that as the press speed increases, more force and pressure is applied to the material. Also, the peak values of the other sections were found to increase as the press speed increased. It was found that the pressing time, the time interval between "Punch contact and start of pressing" and "End of pressing", decreases as the pressing speed increases. Similarly, press speed factor, the time interval between "Holder contact", and "Punch contact and start of pressing", is found to be shorter. Therefore, based on the result of this study, the pressing time, press speed, pressing(punching) pressure of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process information and characterization can be evaluated as the change of the mold vibration during press molding.

  • PDF

Case Study on the Time Zero (T0) of Event Data Recorder (사고기록장치의 기록 시점에 대한 사례연구)

  • Jongjin Park;Jeongman Park;Jungwoo Park;Byungdeok In
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.35-41
    • /
    • 2023
  • On December 19, 2015, as Article 29-3 (Installation of Accident Recording Devices and Provision of Information) of Motor Vehicle Management Act came into force, In Korea, the EDR (Event Data Recorder) reports are often used for the analysis of various traffic accident cases such as multiple collisions, traffic insurance crimes, and sudden unintended acceleration (SUA), and the others. So many investigators have analyzed the driver's behavior and vehicle situation by comparing the time zero in the EDR report to the actual crash time in dash-cam (or CCTV). Time zero (T0) is defined as the reference time for the record interval or time interval when recording an accident in Article 56-2, Enforcement rule of Performance and Standard for Automobile and Automotive parts. Also in the EDR report, time zero (T0) is defined as whichever of the following occurs first; 1. "wake-up" by an air-bag control system, 2. Continuously running algorithms (by monitoring of longitudinal or lateral delta-V), 3. Deployment of a non-reversible deployment restraint. We have already proposed the "Flowchart & Checklist" to adopt the EDR report for traffic accident investigation and the necessity of specialized institutions or courses to systematically educate or analyze the EDR data. Therefore, in this paper, we report to traffic accident investigators notable points and analysis methods based on some real-world traffic accidents that can be misjudged in specifying time zero (T0).

Acceleration of Simulated Fault Injection Using a Checkpoint Forwarding Technique

  • Na, Jongwhoa;Lee, Dongwoo
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.605-613
    • /
    • 2017
  • Simulated fault injection (SFI) is widely used to assess the effectiveness of fault tolerance mechanisms in safety-critical embedded systems (SCESs) because of its advantages such as controllability and observability. However, the long test time of SFI due to the large number of test cases and the complex simulation models of modern SCESs has been identified as a limiting factor. We present a method that can accelerate an SFI tool using a checkpoint forwarding (CF) technique. To evaluate the performance of CF-based SFI (CF-SFI), we have developed a CF mechanism using Verilog fault-injection tools and two systems under test (SUT): a single-core-based co-simulation model and a triple modular redundant co-simulation model. Both systems use the Verilog simulation model of the OpenRISC 1200 processor and can execute the embedded benchmarks from MiBench. We investigate the effectiveness of the CF mechanism and evaluate the two SUTs by measuring the test time as well as the failure rates. Compared to the SFI with no CF mechanism, the proposed CF-SFI approach reduces the test time of the two SUTs by 29%-45%.