• Title/Summary/Keyword: AI-based mathematics teaching and learning

Search Result 16, Processing Time 0.023 seconds

Systematic literature review on AI-based mathematics teaching and learning: Focusing on the role of AI and teachers (AI 기반 수학 교수·학습에 대한 체계적 문헌 고찰: AI의 역할과 교사의 역할을 중심으로)

  • Jungeun Yoon;Oh Nam Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.573-591
    • /
    • 2024
  • The purpose of this study is to explore research trends on AI-based mathematics teaching and learning. For this purpose, a systematic literature review was conducted on 57 literatures in terms of research subject, research method, research purpose, learning content, type of AI, role of AI, and role of teachers. The results indicate that student accounted for the largest proportion at 51% among the research subjects, and quantitative research was the highest at 49% among the research methods. The purpose of study was distributed as follows: effect analysis 44%, theoretical discussion 35%, case study 21%. 'Numbers and Operations' and 'Variables and Expressions' covered learning contents most, and Intelligent Tutoring System (ITS) was used the most among the types of AI. 'Student teaching' was the largest parts of role of AI at 40.4%, followed by 'teacher support' at 22.8%, 'student support' at 21%, and 'system support' at 15.8%. The role of teachers as 'AI recipients' was highlighted in earlier studies, and the role of teachers as 'constructive partner with AI' was highlighted in more recent studies. Also, role of teachers was explored in pedagogical, AI-technological, content aspects. Through this, follow-up research was suggested and the roles that teachers should have in AI-based mathematics teaching and learning were discussed.

Exploring teaching and learning methods using artificial intelligence (AI) in the mathematics classroom : Focusing on the development of middle school statistic scenarios (수학교실에서 인공지능(AI)을 활용한 교수학습 방안 탐색 : 중학교 통계 단원 시나리오 개발을 중심으로)

  • Choi, Inseon
    • Journal of the Korean School Mathematics Society
    • /
    • v.25 no.2
    • /
    • pp.149-174
    • /
    • 2022
  • The purpose of this study is to explore the teaching and learning method using artificial intelligence (AI) in the mathematics classroom. To this end, to predict the direction of mathematics education using AI in the mathematics classroom, this study investigates the fields where AI is applied to education, and discuss issues to consider when introducing AI through scenario development using AI in middle school statistics. This study is meaningful in that it specifically considered how artificial intelligence can be grafted into the mathematics classroom through the development of scenarios that integrate and apply artificial intelligence that has been developed and used segmentally in the current middle school statistics. Afterwards, based on the contents of this study, implications for using AI in the math classroom were derived.

AI-Based Educational Platform Analysis Supporting Personalized Mathematics Learning (개별화 맞춤형 수학 학습을 지원하는 AI 기반 플랫폼 분석)

  • Kim, Seyoung;Cho, Mi Kyung
    • Communications of Mathematical Education
    • /
    • v.36 no.3
    • /
    • pp.417-438
    • /
    • 2022
  • The purpose of this study is to suggest implications for mathematics teaching and learning when using AI-based educational platforms that support personalized mathematics learning. To this end, we selected five platforms(Knock-knock! Math Expedition, knowre, Khan Academy, MATHia, CENTURY) and analyzed how the AI-based educational platforms for mathematics reflect the three elements(PLP, PLN, PLE) to support personalized learning. The results of this study showed that although the characteristics of PLP, PLN, and PLE implemented on each platform varied, they were designed to form PLEs that allow learners to make their autonomous decisions about learning based on PLP and PLN. The significance of this study can be found in that it has improved the understanding and practicability of personalized mathematics learning with the AI-based educational platforms.

Digital typological analysis of AI courseware in mathematics education (수학교육에서 AI 코스웨어의 디지털 유형학적 분석)

  • Son, Taekwon;Kang, Dahye
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.261-279
    • /
    • 2024
  • The purpose of this study is to examine the characteristics of AI courseware for mathematics learning based on Choppin et al.'s (2014) digital typology and to derive implications for directions for AI courseware development. For this purpose, 12 types of AI courseware actively used in domestic were selected for analysis, and the characteristics of these AI courseware in terms of program-student interaction, teacher' s lesson design, and evaluation system were analyzed. As a result, each AI courseware provided unique functional features for students, teachers, and evaluation, but the ability to modify and configure teaching and learning was limited. Based on these results, implications for the direction of development of AI courseware in mathematics education were presented.

An analysis of perceptions of elementary teachers and secondary mathematics teachers on the use of artificial intelligence (AI) in mathematics education (수학교육에서 인공지능 활용에 대한 초등 교사와 중등 수학 교사의 인식 분석)

  • JeongWon Kim
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.351-368
    • /
    • 2024
  • One of the important factors for the effective implementation of artificial intelligence (AI) in mathematics education is the perceptions of the teachers who adopt it. This study surveyed 161 elementary school teachers and 157 secondary mathematics teachers on their perceptions of using AI in mathematics education, grouped into four categories: attitude toward using AI, AI for teaching mathematics, AI for learning mathematics, and AI for assessing mathematics. The findings showed that teachers were most positive about using AI for teaching and learning mathematics, whereas their attitudes towards using AI were less favorable. In addition, elementary school teachers demonstrated a higher positive response rate across all categories compared to secondary mathematics teachers, who exhibited more neutral perceptions. Based on the results, we discussed the pedagogical implications for teachers to effectively use AI in mathematics education.

Use of ChatGPT in college mathematics education (대학수학교육에서의 챗GPT 활용과 사례)

  • Sang-Gu Lee;Doyoung Park;Jae Yoon Lee;Dong Sun Lim;Jae Hwa Lee
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • This study described the utilization of ChatGPT in teaching and students' learning processes for the course "Introductory Mathematics for Artificial Intelligence (Math4AI)" at 'S' University. We developed a customized ChatGPT and presented a learning model in which students supplement their knowledge of the topic at hand by utilizing this model. More specifically, first, students learn the concepts and questions of the course textbook by themselves. Then, for any question they are unsure of, students may submit any questions (keywords or open problem numbers from the textbook) to our own ChatGPT at https://math4ai.solgitmath.com/ to get help. Notably, we optimized ChatGPT and minimized inaccurate information by fully utilizing various types of data related to the subject, such as textbooks, labs, discussion records, and codes at http://matrix.skku.ac.kr/Math4AI-ChatGPT/. In this model, when students have questions while studying the textbook by themselves, they can ask mathematical concepts, keywords, theorems, examples, and problems in natural language through the ChatGPT interface. Our customized ChatGPT then provides the relevant terms, concepts, and sample answers based on previous students' discussions and/or samples of Python or R code that have been used in the discussion. Furthermore, by providing students with real-time, optimized advice based on their level, we can provide personalized education not only for the Math4AI course, but also for any other courses in college math education. The present study, which incorporates our ChatGPT model into the teaching and learning process in the course, shows promising applicability of AI technology to other college math courses (for instance, calculus, linear algebra, discrete mathematics, engineering mathematics, and basic statistics) and in K-12 math education as well as the Lifespan Learning and Continuing Education.

An analysis of the use of technology tools in high school mathematics textbooks based (고등학교 수학 교과서의 공학 도구 활용 현황 분석)

  • Oh, Se Jun
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.263-286
    • /
    • 2024
  • With the introduction of AI digital textbooks, interest in the use of technology tools in mathematics education is increasing. Technology tools have the advantage of visualizing mathematical concepts and discovering mathematical principles through experimentation and inquiry. The 2015 revised mathematics curriculum in Korea already mentions the use of technology tools, and accordingly, various teaching and learning activities using technology tools are presented in mathematics textbooks. However, there is still a lack of systematic analysis on the types and utilization methods of technology tools presented in textbooks. Therefore, this study analyzed the current status of the use of technology tools presented in high school mathematics textbooks based on the 2015 revised curriculum. To this end, the types of technology tools presented in mathematics textbooks were categorized, and the utilization ratio of each category was investigated. In addition, the utilization patterns of technology tools were analyzed by subject and content area, and the utilization ratio of technology tools according to the type of teaching and learning activities was examined. The results showed that technology tools were used in various types and ratios according to the subject and content area. In particular, technology tools in the symbol-manipulation graphing software category accounted for 58% of the total usage cases, showing the highest proportion. By subject, the use of symbol-manipulation graphing software was prominent in subjects dealing with the analysis area, while the use of dynamic geometry software was relatively high in the geometry area. In terms of teaching and learning activity types, the utilization ratio of auxiliary tool type (49%) and intended inquiry induction type (37%) was high. The results of this study show that technology tools play various roles in mathematics textbooks and provide useful implications for improving mathematics teaching and learning methods using technology tools in the future. Furthermore, it can contribute to the establishment of educational policies related to AI digital textbooks and the development of teacher training programs.

A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning (개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델)

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • Clear analysis and diagnosis of various characteristic factors of individual students is the most important in order to realize individual customized teaching and learning, which is considered the most essential function of math artificial intelligence-based digital textbooks. In this study, analysis factors and tools for individual customized learning diagnosis and construction models for data collection and analysis were derived from mathematical AI digital textbooks. To this end, according to the Ministry of Education's recent plan to apply AI digital textbooks, the demand for AI digital textbooks in mathematics, personalized learning and prior research on data for it, and factors for learner analysis in mathematics digital platforms were reviewed. As a result of the study, the researcher summarized the factors for learning analysis as factors for learning readiness, process and performance, achievement, weakness, and propensity analysis as factors for learning duration, problem solving time, concentration, math learning habits, and emotional analysis as factors for confidence, interest, anxiety, learning motivation, value perception, and attitude analysis as factors for learning analysis. In addition, the researcher proposed noon data on the problem, learning progress rate, screen recording data on student activities, event data, eye tracking device, and self-response questionnaires as data collection tools for these factors. Finally, a data collection model was proposed that time-series these factors before, during, and after learning.

Introduction of AI digital textbooks in mathematics: Elementary school teachers' perceptions, needs, and challenges (수학 AI 디지털교과서의 도입: 초등학교 교사가 바라본 인식, 요구사항, 그리고 도전)

  • Kim, Somin;Lee, GiMa;Kim, Hee-jeong
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.199-226
    • /
    • 2024
  • In response to the era of transformation necessitating the introduction of Artificial Intelligence (AI) and digital technologies, educational innovation is undertaken with the implementation of AI digital textbooks in Mathematics, English, and Information subjects by 2025 in Korea. Within this context, this study analyzed the perceptions and needs of elementary school teachers regarding mathematics AI digital textbook. Based on a survey conducted in November 2023, involving 132 elementary school teachers across the country, the analysis revealed that the majority of elementary school teachers had a low perception of the introduction and need for mathematics AI digital textbooks. However, some recognized the potential for personalized learning and effective teaching support. Furthermore, among the core technologies of the AI digital textbook, teachers highly valued the necessity of learning diagnostics and teacher reconfiguration functions and had the most positive perception of their usefulness in math lessons, while their perception of interactivity was relatively low. These findings suggest the need for changing teachers' perceptions through professional development and information provision to ensure the successful adoption and use of mathematics AI digital textbooks. Specifically, providing concrete and practical ways to use the AI digital textbook, exploring alternatives to digital overload, and continuing development and research on core technologies.

Applications and Possibilities of Artificial Intelligence in Mathematics Education (수학교육에서 인공지능 활용 가능성)

  • Park, Mangoo
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.545-561
    • /
    • 2020
  • The purpose of this study is to investigate the applications and possibilities of major programs that provide services using artificial intelligence in mathematics education. For this study, related papers, reports, and materials were collected and analyzed, focusing on materials mostly published within the last five years. The researcher searched the keywords of "artificial intelligence", "artificial intelligence", "AI" and "mathematics education" independently or in combination. As a result of the study, artificial intelligence for mathematics education was mostly supporting learners' personalized mathematics learning, defining it as an auxiliary role to support human mathematics teachers, and upgrading the technology of not only cognitive aspects but also affective aspects. As suggestions, the researcher argued that followings are necessary: Research for the establishment of an elaborate artificial intelligence mathematical system, discovery of artificial intelligence technology for appropriate use to support mathematics education, development of high quality of mathematics contents for artificial intelligence, and the establishment and operation of a cloud-based comprehensive system for mathematics education. The researcher proposed that continuous research to effectively help students study mathematics using artificial intelligence including students' emotional or empathetic abilities, and collaborative learning, which is only possible in offline environments. Also, the researcher suggested that more sophisticated materials should be developed for designing mathematics teaching and learning by using artificial intelligence.