• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.028 seconds

IoT-Based Health Big-Data Process Technologies: A Survey

  • Yoo, Hyun;Park, Roy C.;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.974-992
    • /
    • 2021
  • Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.

Diabetes Detection and Forecasting using Machine Learning Approaches: Current State-of-the-art

  • Alwalid Alhashem;Aiman Abdulbaset ;Faisal Almudarra ;Hazzaa Alshareef ;Mshari Alqasoumi ;Atta-ur Rahman ;Maqsood Mahmud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.199-208
    • /
    • 2023
  • The emergence of COVID-19 virus has shaken almost every aspect of human life including but not limited to social, financial, and economic changes. One of the most significant impacts was obviously healthcare. Now though the pandemic has been over, its aftereffects are still there. Among them, a prominent one is people lifestyle. Work from home, enhanced screen time, limited mobility and walking habits, junk food, lack of sleep etc. are several factors that have still been affecting human health. Consequently, diseases like diabetes, high blood pressure, anxiety etc. have been emerging at a speed never witnessed before and it mainly includes the people at young age. The situation demands an early prediction, detection, and warning system to alert the people at risk. AI and Machine learning has been investigated tremendously for solving the problems in almost every aspect of human life, especially healthcare and results are promising. This study focuses on reviewing the machine learning based approaches conducted in detection and prediction of diabetes especially during and post pandemic era. That will help find a research gap and significance of the study especially for the researchers and scholars in the same field.

Deep-Learning Based Real-time Fire Detection Using Object Tracking Algorithm

  • Park, Jonghyuk;Park, Dohyun;Hyun, Donghwan;Na, Youmin;Lee, Soo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, we propose a fire detection system based on CCTV images using an object tracking technology with YOLOv4 model capable of real-time object detection and a DeepSORT algorithm. The fire detection model was learned from 10800 pieces of learning data and verified through 1,000 separate test sets. Subsequently, the fire detection rate in a single image and fire detection maintenance performance in the image were increased by tracking the detected fire area through the DeepSORT algorithm. It is verified that a fire detection rate for one frame in video data or single image could be detected in real time within 0.1 second. In this paper, our AI fire detection system is more stable and faster than the existing fire accident detection system.

A Pre-Study on the Open Source Prometheus Monitoring System (오픈소스 Prometheus 모니터링 시스템의 사전연구)

  • An, Seong Yeol;Cha, Yoon Seok;Jeon, Eun Jin;Gwon, Gwi Yeong;Shin, Byeong Chun;Cha, Byeong Rae
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.110-118
    • /
    • 2021
  • The Internet of Things (IoT) technology, a key growth engine of the 4th industrial revolution, has grown to a stage where it can autonomously communicate with each other and process data according to space and circumstances. Accordingly, the IT infrastructure becomes increasingly complex and the importance of the monitoring field for maintaining the system stably is increasing. Monitoring technology has been used in the past, but there is a need to find a flexible monitoring system that can respond to the rapidly changing ICT technology. This paper conducts research on designing and testing an open source-based Prometheus monitoring system. We builds a simple infrastructure based on IoT devices and collects data about devices through the Exporter. Prometheus collects data based on pull and then integrates into one dashboard using Grafana and visualizes data to monitor device information.

LH-FAS v2: Head Pose Estimation-Based Lightweight Face Anti-Spoofing (LH-FAS v2: 머리 자세 추정 기반 경량 얼굴 위조 방지 기술)

  • Hyeon-Beom Heo;Hye-Ri Yang;Sung-Uk Jung;Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.309-316
    • /
    • 2024
  • Facial recognition technology is widely used in various fields but faces challenges due to its vulnerability to fraudulent activities such as photo spoofing. Extensive research has been conducted to overcome this challenge. Most of them, however, require the use of specialized equipment like multi-modal cameras or operation in high-performance environments. In this paper, we introduce LH-FAS v2 (: Lightweight Head-pose-based Face Anti-Spoofing v2), a system designed to operate on a commercial webcam without any specialized equipment, to address the issue of facial recognition spoofing. LH-FAS v2 utilizes FSA-Net for head pose estimation and ArcFace for facial recognition, effectively assessing changes in head pose and verifying facial identity. We developed the VD4PS dataset, incorporating photo spoofing scenarios to evaluate the model's performance. The experimental results show the model's balanced accuracy and speed, indicating that head pose estimation-based facial anti-spoofing technology can be effectively used to counteract photo spoofing.

The Study of Criminal Lingo Analysis on Cyberspace and Management Used in Artificial Intelligence and Block-chain Technology

  • Yoon, Cheolhee;Lee, Bong Gyou
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.54-60
    • /
    • 2020
  • Online cybercrime has various causes. The criminal guilty language, Criminal lingo is active in the shaded area with the bilateral aspect of the word on cyber. It has been continuously producing massive risk factors in cyberspace. Criminals are shared and disseminated online. It has been linked with fake news and aids to suicide that has recently become an issue. Thus the criminal lingo has become a real danger factor on cyber interface. Recently, Criminal lingo is shared and distributed as cyber hazard information. It is transformed that damaging to the youth and ordinary people through the internet and social networks. In order to take action, it is necessary to construct an expert system based on AI to implement a smart management architecture with block-chain technology. In this paper, we study technically a new smart management architecture which uses artificial intelligence based decision algorithm and block-chain tracking technology to prevent the spread of criminal lingo factors in the evolving cyber world. In addition, through the off-line regular patrol program of police units, we proposed the conversion of online regular patrol program for "cyber harem area".

A Study on the Data Collection and Analysis System for Learning Experiences in Learner-Centered Customized Education (학습자 중심의 맞춤형 교육을 위한 학습 경험 데이터 수집 및 분석 체계 연구)

  • Sang-woo Kim;Myung-suk Lee
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.159-165
    • /
    • 2024
  • This study investigates the comprehensive system for collecting intelligent learning activity data tailored to learner-centered personalized education. We compared and analyzed the characteristics of xAPI, Caliper analytics, and cmi5, which are learning activity data collection standards, and established a system that allows not only standardized data but also non-standardized learning activity data to be stored as big data for artificial intelligence learning analysis. As a result, the system was structured into five stages: defining data types, standardizing learning data using xAPI, storing big data, conducting learning analysis (statistical and AI-based), and providing learner-tailored services. The aim was to establish a foundation for analyzing learning data using artificial intelligence technology. In future research, we will divide the entire system into three stages, implement and execute it, and correct and supplement any shortcomings in the design.

Study of the Construction of a Coastal Disaster Prevention System using Deep Learning (딥러닝을 이용한 연안방재 시스템 구축에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, Myong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • Numerous deaths and substantial property damage have occurred recently due to frequent disasters of the highest intensity according to the abnormal climate, which is caused by various problems, such as global warming, all over the world. Such large-scale disasters have become an international issue and have made people aware of the disasters so they can implement disaster-prevention measures. Extensive information on disaster prevention actively has been announced publicly to support the natural disaster reduction measures throughout the world. In Japan, diverse developmental studies on disaster prevention systems, which support hazard map development and flood control activity, have been conducted vigorously to estimate external forces according to design frequencies as well as expected maximum frequencies from a variety of areas, such as rivers, coasts, and ports based on broad disaster prevention data obtained from several huge disasters. However, the current reduction measures alone are not sufficiently effective due to the change of the paradigms of the current disasters. Therefore, in order to obtain the synergy effect of reduction measures, a study of the establishment of an integrated system is required to improve the various disaster prevention technologies and the current disaster prevention system. In order to develop a similar typhoon search system and establish a disaster prevention infrastructure, in this study, techniques will be developed that can be used to forecast typhoons before they strike by using artificial intelligence (AI) technology and offer primary disaster prevention information according to the direction of the typhoon. The main function of this model is to predict the most similar typhoon among the existing typhoons by utilizing the major typhoon information, such as course, central pressure, and speed, before the typhoon directly impacts South Korea. This model is equipped with a combination of AI and DNN forecasts of typhoons that change from moment to moment in order to efficiently forecast a current typhoon based on similar typhoons in the past. Thus, the result of a similar typhoon search showed that the quality of prediction was higher with the grid size of one degree rather than two degrees in latitude and longitude.

A Study on Government Service Innovation with Intelligent(AI): Based on e-Government Website Assessment Data (전자정부 웹사이트 평가 결과 데이터 기반 지능형(AI) 정부 웹서비스 관리 방안 연구)

  • Lee, Eun Suk;Cha, Kyung Jin
    • Journal of Information Technology Services
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • As a key of access to public participation and information, e-government is taking the active role of public service by relevant laws and policy measures for universal use of e-government websites. To improve the accessibility of web contents, the level of deriving the results for each detailed evaluation item according to the Korean web contents accessibility guideline is carried out, which is an important factor according to the detailed evaluation items for each website property and requires data-based management. In this paper, detailed indicators are analyzed based on the quality control level diagnosis results of existing domestic e-government websites, and the results are classified according to high and low to propose new improvement directions and induce detailed improvement. Depending on the necessity of management according to the detailed indicators for each website attribute, not only results but also level diagnosis to strengthen web service quality suggests directions for future improvement through accurate detailed analysis and research for policy feedback. This study ultimately makes it possible to expect government system management based on predicted data through deduction history management based on evaluation score data on public websites. And it provides several theoretical and practical implications through correlation and synergy. The characteristics of each score for the quality management of public sector websites were identified, and the accuracy of evaluation, the possibility of sophisticated analysis, such as analysis of characteristics of each institution, were expanded. With creating an environment for improving the quality of public websites and it is expected that the possibility of evaluation accuracy and elaborate analysis can be expanded in the e-government performance and the post-introduction stage of government website service.

AI Fire Detection & Notification System

  • Na, You-min;Hyun, Dong-hwan;Park, Do-hyun;Hwang, Se-hyun;Lee, Soo-hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.63-71
    • /
    • 2020
  • In this paper, we propose a fire detection technology using YOLOv3 and EfficientDet, the most reliable artificial intelligence detection algorithm recently, an alert service that simultaneously transmits four kinds of notifications: text, web, app and e-mail, and an AWS system that links fire detection and notification service. There are two types of our highly accurate fire detection algorithms; the fire detection model based on YOLOv3, which operates locally, used more than 2000 fire data and learned through data augmentation, and the EfficientDet, which operates in the cloud, has conducted transfer learning on the pretrained model. Four types of notification services were established using AWS service and FCM service; in the case of the web, app, and mail, notifications were received immediately after notification transmission, and in the case of the text messaging system through the base station, the delay time was fast enough within one second. We proved the accuracy of our fire detection technology through fire detection experiments using the fire video, and we also measured the time of fire detection and notification service to check detecting time and notification time. Our AI fire detection and notification service system in this paper is expected to be more accurate and faster than past fire detection systems, which will greatly help secure golden time in the event of fire accidents.