Lee, Won Joo;Kim, Doohyun;Kim, Sang Il;Kim, Han Sung
한국컴퓨터정보학회논문지
/
제27권3호
/
pp.251-258
/
2022
본 논문에서는 산업체 수요에 기반한 표준 AI 개발자 직무 교육과정을 제안한다. 이 교육과정의 특징은 산업체와 대학간의 AI 개발자 직무 역량의 미스 매치를 최소화 할 수 있다는 것이다. AI 개발자 직무 교육과정 개발을 위해 산업체 현장에 재직중인 AI 개발자를 대상으로 설문 조사를 실시한다. 이 설문조사에서는 NCS 기반의 5개 AI 개발자 직무 중 산업체 현장의 인력 수요가 많은 AI 개발자 직무를 도출하여 직무분석을 실시한다. 직무분석에서는 해당 직무의 핵심 능력단위요소를 선정하고, 그 핵심 능력단위요소를 수행하기 위해 필요한 지식, 기술, 도구 등을 도출한다. 그리고 지식, 기술, 도구 등을 교육할 수 있는 핵심 교과목과 이수 체계를 도출하여 표준 AI 개발자 직무 교육과정을 개발한다. 그리고 본 논문에서 제안한 표준 AI 개발자 직무 교육과정을 활용한 효율적인 AI 개발자 직무 교육 방안을 제시한다.
Kim, Han Sung;Kim, Doohyun;Kim, Sang Il;Lee, Won Joo
한국컴퓨터정보학회논문지
/
제27권3호
/
pp.25-31
/
2022
본 연구의 목적은 국내 대학의 인공지능(AI) 전공 교육과정에 대한 실태 분석을 통해 향후, 더욱 체계적인 AI 교육과정 운영을 위한 시사점을 탐색하는 것에 있다. 이를 위해, 사전 연구를 통해 개발한 산업계 수요 기반의 대학 AI 전공 표준형 교육과정을 활용해 국내 대학(SW중심대학 외 총 51개교)과 해외 QS Top 10 대학의 관련 교육과정을 분석하였다. 주요 연구 결과를 살펴보면 다음과 같다. 첫째, 국내 대학의 경우 파이썬 중심의 프로그래밍 과목이 부족하였다. 둘째, AI 응용, 융합 등의 심화학습을 위한 과목이 적었다. 셋째, AI 개발자 직무를 수행하기 위해 요구되는 과목(ex, 컨테이너 인프라 구축, DevOps 실습 등)의 과목이 부족하였다. 넷째, 전문대학의 경우 AI 수학 관련 교과 개설 비율이 낮았다. 본 연구는 이러한 결과를 토대로 향후 체계적인 AI 전공 교육과정 운영을 위한 시사점을 제시하였다.
강화학습에는 다양한 알고리즘이 있으며 분야에 따라 사용되는 알고리즘이 다르다. 게임 분야에서도 강화학습을 사용하여 인공지능을 개발할 때 특정 알고리즘이 사용된다. 알고리즘에 따라 학습 방식이 다르고 그로 인해 만들어지는 인공지능도 달라진다. 그러므로 개발자는 목적에 맞는 인공지능을 구현하기 위해 적절한 알고리즘을 선택해야 한다. 그러기 위해서 개발자는 알고리즘의 학습 방식과 어떤 종류의 인공지능 구현에 적용되는 것이 효율적인지 알고 있어야 한다. 따라서 이 논문에서는 게임 인공지능 구현에 사용되는 알고리즘인 SAC, PPO, POCA 세 가지 알고리즘의 학습 방식과 어떤 종류의 인공지능 구현에 적용되는 것이 효율적인지 비교한다.
Digital transformation has induced changes in human life patterns; consumption patterns are also changing to digitalization. Entering the era of industry 4.0 with the 4th industrial revolution, it is important to pay attention to a new paradigm in the fashion industry, the shift from developer-centered to user-centered in the era of the 3rd industrial revolution. The meaning of storing users' changing life and consumption patterns and analyzing stored big data are linked to consumer sentiment. It is more valuable to read emotions, then develop and distribute products based on them, rather than developer-centered processes that previously started in the fashion market. An AI(Artificial Intelligence) deep learning algorithm that analyzes user emotion big data from user experience(UX) to emotion and uses the analyzed data as a source has become possible. By combining AI technology, the fashion industry can develop various new products and technologies that meet the functional and emotional aspects required by consumers and expect a sustainable user experience structure. This study analyzes clear and useful user experience in the fashion industry to derive the characteristics of AI algorithms that combine emotions and technologies reflecting users' needs and proposes methods that can be used in the fashion industry. The purpose of the study is to utilize information analysis using big data and AI algorithms so that structures that can interact with users and developers can lead to a sustainable ecosystem. Ultimately, it is meaningful to identify the direction of the optimized fashion industry through user experienced emotional fashion technology algorithms.
Artificial intelligence (AI) 프로젝트에 널리 사용되는 Python 언어는 Interpreter 언어로 Runtime 시에 오류가 발생한다. 오류로 인한 프로젝트의 실패를 방지하기 위해서는 사전에 예외적인 상황이 발생할 수 있는 코드에 대한 예외 처리가 필요하다. 특히, 많은 리소스를 필요로 하는 AI 프로젝트에서, 오랜 실행 후 발생하는 예외는 큰 리소스 낭비를 초래한다. 하지만, 예외 처리는 개발자의 경험에 의존하기 때문에 개발자들은 잡아야 할 적절한 예외를 결정하는데 어려움을 가진다. 이러한 필요성을 해결하기 위해 기존 예외 처리문을 학습하여 개발 중에 개발자에게 잡아야 할 예외를 제안해주는 접근 방법을 제안한다. 제안 방법은 try 블록의 소스 코드를 입력으로 받아 except 블록에서 처리되어야 할 예외들을 제안해준다. 우리는 2개의 프레임워크로 구성된 대규모 프로젝트에 대해 접근 방법을 평가한다. 우리의 평가 결과에 따르면, 예외 제안을 수행할 때 평균 AUPRC는 0.92 이상을 나타낸다. 연구 결과는 제안된 방법이 비교 모델들을 능가하는 예외 제안 성능으로 개발자의 예외 처리를 지원할 수 있음을 보여준다.
The remarkable achievements of the artificial intelligence in recent years are also raising awareness about its potential risks. Several governments and public organizations have been proposing the artificial intelligence ethics for sustainable development of artificial intelligence by minimizing potential risks. However, most existing proposals are focused on the developer-centered ethics, which is not sufficient for the comprehensive ethics required for ongoing intelligent information society. In addition, they have chosen a number of principles as the starting point of artificial intelligence ethics, so it is not easy to derive the guideline flexibly for a specific member reflecting its own situation. In this paper, we classify primitive members who need artificial intelligence ethics in intelligent information society into three : Developer, Supplier and User. We suggest a new artificial intelligence ethics, Seoul PACT, with minimal principles through publicness (P), accountability (A), controllability (C), and transparency (T). In addition, we provide 38 canonical guidelines based on these four principles, which are applicable to each primitive members. It is possible for a specific member to duplicate the roles of primitive members, so that the flexible derivation of the artificial intelligence ethics guidelines can be made according to the characteristics of the member reflecting its own situation. As an application example, in preparation for applying artificial intelligence to e-government service, we derive a full set of artificial intelligence ethics guideline from Seoul PACT, which can be adopted by the special member named Korean Government.
하드웨어의 성능이 높아질수록 게임 유저들은 높은 수준의 컴퓨터 그래픽, 편리한 유저 인터페이스, 빠른 속도를 가진 네트워크 그리고 영리한 게임 인공지능을 요구하고 있다. 하지만 현재 게임 인공지능 개발은 개발자 혼자 하거나 한 회사의 개발팀에서만 이루어질 뿐이다. 그래서 자신이 혹은 회사에서 개발한 게임 인공지능의 성능이 어느 정도인지 검증을 하기 힘들고 높은 수준의 게임 인공지능을 개발하기 위해 필요한 기본 게임 인공지능기술들이 부족하다. 본 논문에서는 기존의 게임인공지능 플랫폼들의 장, 단점을 알아보고 게임인공지능 플랫폼의 설계 시 고려해야 할 점을 고찰한다. 이것을 바탕으로 전략적 위치를 찾아주는 모듈이 있어 개발자 들이 손쉽게 게임 인공지능을 구현 하고 인공지능 테스트가 가능한 에이전트기반 게임 플랫폼인 Darwin을 제안한다. 그리고 Darwin에서 제공하는 전략적 모듈을 사용하여 제작한 에이전트를 만들어 수행결과를 평가한다.
본 연구는 인공지능(이하 AI)이 모든 영역에 전일적으로 확산되는 시점을 맞아 비전공자들도 AI를 효과적으로 학습하는 방안을 탐색하기 위한 하나의 시론적 연구이다. AI 교육을 수학, 통계, 컴퓨터공학 전공 학생들뿐만 아니라 인문·사회과학 등 다른 전공자들도 쉽게 접근할 수 있도록 하기 위한 학습법을 탐색하고자 하였다. 마침 '설명 가능한 AI(XAI: eXplainable AI)'의 필요성과 MIT AI 연구소의 Patrick Winston의 '지각 있는 기계(AI)를 위한 스토리텔링의 중요성[33]'이 두드러진 상황에서 AI 스토리텔링 학습모델 연구의 의의를 찾을 수 있겠다. 이를 위해 본 연구는 우선 대구 소재 A 대학교의 학생들을 대상으로 그 가능성을 테스트하였다. 먼저 AI 스토리텔링(AI+ST) 학습법[30]의 교육목표, AI 교육내용의 체계와 학습방법론, 새로운 AI 도구의 소개 및 활용에 대해 살펴보고, 1) AI+ST 학습법이 알고리즘 중심의 학습법을 보완할 수 있는지, 2) AI+ST 학습법이 학생들에게도 효과가 있는지, 그리하여 AI 이해력, 흥미도, 응용력 배양에 도움이 되었는지에 관한 연구 질문을 중심으로 학습자들의 결과물을 비교 분석하였다.
Tunio, Muhammad Zahid;Luo, Haiyong;Wang, Cong;Zhao, Fang;Shao, Wenhua;Pathan, Zulfiqar Hussain
Journal of Information Processing Systems
/
제14권1호
/
pp.129-139
/
2018
The crowdsourcing software development (CSD) is growing rapidly in the open call format in a competitive environment. In CSD, tasks are posted on a web-based CSD platform for CSD workers to compete for the task and win rewards. Task searching and assigning are very important aspects of the CSD environment because tasks posted on different platforms are in hundreds. To search and evaluate a thousand submissions on the platform are very difficult and time-consuming process for both the developer and platform. However, there are many other problems that are affecting CSD quality and reliability of CSD workers to assign the task which include the required knowledge, large participation, time complexity and incentive motivations. In order to attract the right person for the right task, the execution of action plans will help the CSD platform as well the CSD worker for the best matching with their tasks. This study formalized the task assignment method by utilizing different situations in a CSD competition-based environment in artificial intelligence (AI) planning. The results from this study suggested that assigning the task has many challenges whenever there are undefined conditions, especially in a competitive environment. Our main focus is to evaluate the AI automated planning to provide the best possible solution to matching the CSD worker with their personality type.
4차 산업혁명이 도래함에 따라 초등학교 현장에서는 인공지능 교육에 대한 관심이 증가하고 있다. 인공지능 역량을 지닌 미래 인재를 기르기 위해서는 학교 현장에서 인공지능 교육이 적극적으로 이루어져야 한다. 2015 개정 교육과정에서는 기초적인 소프트웨어 교육을 하고 있지만 인공지능을 만들어내는 프로그래밍 과정을 문제해결 과정으로만 보는 경향이 있다. 하지만 하나의 인공지능을 만들 때에는 인공지능을 만드는 개발자의 가치가 투영된다. 따라서 SW교육 시 인공지능 가치 판단에 대한 내용을 다루어야 할 것이다. 본 연구는 전문가 집단을 대상으로 델파이 조사가 이루어진 점에 따라 제한점이 존재한다. 향후 이와 같은 제한점을 보완하기 위해 양적 연구가 진행되어야 할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.