DOI QR코드

DOI QR Code

A Case Study on the Effect of the Artificial Intelligence Storytelling(AI+ST) Learning Method

인공지능 스토리텔링(AI+ST) 학습 효과에 관한 사례연구

  • Received : 2020.09.08
  • Accepted : 2020.10.26
  • Published : 2020.10.31

Abstract

This study is a theoretical research to explore ways to effectively learn AI in the age of intelligent information driven by artificial intelligence (hereinafter referred to as AI). The emphasis is on presenting a teaching method to make AI education accessible not only to students majoring in mathematics, statistics, or computer science, but also to other majors such as humanities and social sciences and the general public. Given the need for 'Explainable AI(XAI: eXplainable AI)' and 'the importance of storytelling for a sensible and intelligent machine(AI)' by Patrick Winston at the MIT AI Institute [33], we can find the significance of research on AI storytelling learning model. To this end, we discuss the possibility through a pilot study targeting general students of an university in Daegu. First, we introduce the AI storytelling(AI+ST) learning method[30], and review the educational goals, the system of contents, the learning methodology and the use of new AI tools in the method. Then, the results of the learners are compared and analyzed, focusing on research questions: 1) Can the AI+ST learning method complement algorithm-driven or developer-centered learning methods? 2) Whether the AI+ST learning method is effective for students and thus help them to develop their AI comprehension, interest and application skills.

본 연구는 인공지능(이하 AI)이 모든 영역에 전일적으로 확산되는 시점을 맞아 비전공자들도 AI를 효과적으로 학습하는 방안을 탐색하기 위한 하나의 시론적 연구이다. AI 교육을 수학, 통계, 컴퓨터공학 전공 학생들뿐만 아니라 인문·사회과학 등 다른 전공자들도 쉽게 접근할 수 있도록 하기 위한 학습법을 탐색하고자 하였다. 마침 '설명 가능한 AI(XAI: eXplainable AI)'의 필요성과 MIT AI 연구소의 Patrick Winston의 '지각 있는 기계(AI)를 위한 스토리텔링의 중요성[33]'이 두드러진 상황에서 AI 스토리텔링 학습모델 연구의 의의를 찾을 수 있겠다. 이를 위해 본 연구는 우선 대구 소재 A 대학교의 학생들을 대상으로 그 가능성을 테스트하였다. 먼저 AI 스토리텔링(AI+ST) 학습법[30]의 교육목표, AI 교육내용의 체계와 학습방법론, 새로운 AI 도구의 소개 및 활용에 대해 살펴보고, 1) AI+ST 학습법이 알고리즘 중심의 학습법을 보완할 수 있는지, 2) AI+ST 학습법이 학생들에게도 효과가 있는지, 그리하여 AI 이해력, 흥미도, 응용력 배양에 도움이 되었는지에 관한 연구 질문을 중심으로 학습자들의 결과물을 비교 분석하였다.

Keywords

References

  1. Ashri, R. (2019). Defining an AI Strategy. The AI-Powered Workplace. Berkeley: Apress. 143-159.
  2. Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J. & Zieba, K. (2016). End to End Learning for Self-Driving Cars. NVIDIA Corporation. Retrived From http://arxiv.org/pdf/ 604.07316.pdf?source=post_page
  3. Christopher, A. (2020). How Netflix Uses AI For Better Content Recommendation. Medium (2020.5.14.). Retrived From https://medium.com/@albertchristopherr/how-netflix-uses-ai-for-better-content-recommendation-e1423784ef4
  4. Corchado, J. M. (1996). Case-Base Reasoning Recommendation System. IEEE COLLOQUIUM ON KNOWLEDGE DISCOVERY (LONDON ENGLAND UK). ResearchGate, 1-3.
  5. Csikszentmihalyi, M. (2013). Creativity: Flow and the Psychology of Discovery and Invention. New York: Harper Perennial.
  6. de la Garza, A. (2020). AI Is About to Spark a Radical Shift in White Collar Work. But There's Still 'Plenty of Work for People to Do.' Time (January 23, 2020). Retrieved From https://time.com/5769005/ai-white-collar-work/
  7. Dernbach, S., Taft, N., Kurose, J., Weinsberg, U., Diot, C., & Ashkan, A. (2016). Cache content-selection policies for streaming video services. The 35th Annual IEEE International Conference on Computer Communications (San Francisco, CA) 1-9.
  8. Dewey, J. (1917). Creative intelligence: essays in the pragmatic attitude. New York. Henry Holt and Company.
  9. Dewey, J. (1920). Reconstruction in philosophy. Boston: Beacon.
  10. Elements of AI (2020). How should we define AI. University of Helsinki. Reaktor.
  11. Goebel, R., Chander, A., Holzinger, K., Lecue, F., Akata, Z., Stumpf, S., Kieseberg, P., & Holzinger, A. (2018). Explainable AI: The New 42? Machine Learning and Knowledge Extraction, 295-303. Springer Link.
  12. Goleman, D. (1995). Emotional Intelligence. Bantam Books.
  13. Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build explainable AI systems for the medical domain? Cornell University. 1-28. Retrieved From https://arxiv.org/abs/1712.09923
  14. Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16, 261-273. https://doi.org/10.1016/j.eij.2015.06.005
  15. Jacobs, G. M. & Renandya, W. A. (2019). Student Centered Cooperative Learning: Linking Concepts in Education to Promote Student Learning. Springer.
  16. Jung, S. W. & Shim, H. C. (2017). Artificial intelligence of self-driving cars. Journal of Mechanical Science and Technology, 57(3), 42-45.
  17. Kilpatrick, W. H. (1924). The project method: The use of the purposeful act in the educative process. NY: Teachers College, Columbia University.
  18. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
  19. Lawrence, S., Giles, C. L., Tsoi, A. C., Back, A. D. (1997). Face recognition: a convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1), 98-113. https://doi.org/10.1109/72.554195
  20. McCarthy, J. (2006). What has AI in Common with Philosophy? Computer Science Department, Stanford University. Stanford. CA 94305, U.S.A. http://jmc.stanford.edu/articles/aiphil/aiphil.pdf
  21. Millecamp, M., Htun, N. N., Jin, Y., & Verbert, K. (2018). Controlling Spotify Recommendations: Effects of Personal Characteristics on Music Recommender User Interfaces. ACM UMAP Conference. Singapore (July 2018). ResearchGate, 1-10.
  22. Minsky, M. (1961). Steps toward Artificial Intelligence. Proceedings of the IRE, 49(1), 8-30. https://doi.org/10.1109/JRPROC.1961.287775
  23. Minsky, M. (2007). The Emotion Machine. Simon & Schuster.
  24. MIT Technology Review (2017). The Artificial Issue. November Issue.
  25. O'Connor, M. R. (2019a). Wayfinding: the science and mystery of how humans navigate the world. South Melbourne. Affirm Press: 118-134.
  26. O'Connor, M. R. (2019b). The Storytelling Computer-Artificial intelligence needs to think like the mythical trickster. Nautilus Think Inc. Retrieved From http://nautil.us/issue/75/story/the-storytelling-computer.
  27. Perez-Marcos, J. & Batista, V. F. L. (2018). Recommender System Based on Collaborative Filtering for Spotify's Users. ResearchGate (2018. 6).
  28. Yeo, H. D. (2020). AI Storytelling Workshop Report for Daegu University Students. Daegu University LINK+Industrial-Academic Cooperation.
  29. Yeo, H. D. & Kang, H. K. (2019). AI Storytelling Workshop Textbook. Seoul: Institute of Smart Education.
  30. Yeo, H. D. & Kang, H. K. (2020). A Study on the Methodology for AI Gifted Education in the Era of AI-Focused on AI+ST Learning Method. Journal of Gifted/Talented Education, 30(2), 89-111. https://doi.org/10.9722/JGTE.2020.30.2.89
  31. Yeo, H. D. & Lee, H. H. (2019). I can buy Picasso paintings, too. Seoul: StoryIsland.
  32. Wilson, H. J. & Daugherty, P. R. (2018). Collaborative Intelligence: Humans and AI Are Joining Forces. Harvard Business Review, July/August Issue, 114-123.
  33. Winston, P. (1992). Artificial Intelligence (3rd Edition). Pearson.
  34. A convolutional neural networks (CNN) Retrieved From https://www.researchgate.net/figure/A-convolutional-neural-networks-CNN_fig6_321286547
  35. A Dog's Way Home (2019). Retrieved From https://youtu.be/wo7I1q2z5IU
  36. Business Insider (2016). Contributed by Jillian D'Onfro (Apr 21, 2016). Retrieved From https://www.businessinsider.com/sundar-pichai-ai-first-world-2016-4
  37. History of Python (2019). Geeks for Geeks-A Computer Science Portal. Retrieved From https://www.geeksforgeeks.org/history-of-python/
  38. Pazzani, M. J. & Billsus, D. (2007). Content-Based Recommendation Systems. Lecture Notes in Computer Science Book Series (LNCS, 4321). The Adaptive Web, 325-341. Springer Link. Retrieved From https://link.springer.com/chapter/10.1007/978-3-540-72079-9_10
  39. Yu, A. (2019). How Netflix Uses AI, Data Science, and Machine Learning - From A Product Perspective. Midium (2019.2.27.). Retrieved From https://becominghuman.ai/how-netflix-uses-ai-and-machine-learning-a087614630fe