• Title/Summary/Keyword: A-monotone mapping

Search Result 71, Processing Time 0.017 seconds

ON NONLINEAR VARIATIONAL INCLUSIONS WITH ($A,{\eta}$)-MONOTONE MAPPINGS

  • Hao, Yan
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.159-169
    • /
    • 2009
  • In this paper, we introduce a generalized system of nonlinear relaxed co-coercive variational inclusions involving (A, ${\eta}$)-monotone map-pings in the framework of Hilbert spaces. Based on the generalized resol-vent operator technique associated with (A, ${\eta}$)-monotonicity, we consider the approximation solvability of solutions to the generalized system. Since (A, ${\eta}$)-monotonicity generalizes A-monotonicity and H-monotonicity, The results presented this paper improve and extend the corresponding results announced by many others.

STRONG CONVERGENCE OF AN EXTENDED EXTRAGRADIENT METHOD FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

  • Kim, Jong-Kyu;Anh, Pham Ngoc;Nam, Young-Man
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.187-200
    • /
    • 2012
  • In this paper, we introduced a new extended extragradient iteration algorithm for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of equilibrium problems for a monotone and Lipschitz-type continuous mapping. And we show that the iterative sequences generated by this algorithm converge strongly to the common element in a real Hilbert space.

AN ITERATIVE METHOD FOR EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS

  • Shang, Meijuan;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.161-173
    • /
    • 2009
  • In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping, the set of solutions of the variational inequality for an inverse-strongly monotone mapping and the set of solutions of an equilibrium problem in a Hilbert space. We show that the iterative sequence converges strongly to a common element of the three sets. The results of this paper extend and improve the corresponding results announced by many others.

  • PDF

AN ITERATIVE METHOD FOR SOLVING EQUILIBRIUM PROBLEM FIXED POINT PROBLEM AND GENERALIZED VARIATIONAL INEQUALITIES PROBLEM

  • Zhang, Lijuan;Li, Juchun
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.527-538
    • /
    • 2011
  • In this paper, we introduce a new iterative scheme for finding a common element of the set of an equilibrium problem, the set of fixed points of nonexpansive mapping and the set of solutions of the generalized variational inequality for ${\alpha}$-inverse strongly g-monotone mapping in a Hilbert space. Under suitable conditions, strong convergence theorems for approximating a common element of the above three sets are obtained.

VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE SEMINGROUPS AND MONOTONE MAPPPINGS

  • Zhang, Lijuan
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.597-604
    • /
    • 2012
  • Let C be a nonempty closed convex subset of real Hilbert space H and F = $\{S(t):t{\geq}0\}$ a nonexpansive self-mapping semigroup of C, and $f:C{\rightarrow}C$ is a fixed contractive mapping. Consider the process {$x_n$} : $$\{{x_{n+1}={\beta}_nx_n+(1-{\beta}_n)z_n\\z_n={\alpha}_nf(x_n)+(1-{\alpha}_n)S(t_n)P_C(x_n-r_nAx_n)$$. It is shown that {$x_n$} converges strongly to a common element of the set of fixed points of nonexpansive semigroups and the set of solutions of the variational inequality for an inverse strongly-monotone mapping which solves some variational inequality.

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS WITH (A, $\eta$)-MONOTONE MAPPINGS IN HILBERT SPACES

  • Shang, Meijuan;Qin, Xiaolong
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, we introduce a system of nonlinear variational inclusions involving (A, $\eta$)-monotone mappings in the framework of Hilbert spaces. Based on the generalized resolvent operator technique associated with (A, $\eta$)-monotonicity, the approximation solvability of solutions using an iterative algorithm is investigated. Our results improve and extend the recent ones announced by many others.

  • PDF

SYSTEM OF GENERALIZED NONLINEAR REGULARIZED NONCONVEX VARIATIONAL INEQUALITIES

  • Salahuddin, Salahuddin
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.181-198
    • /
    • 2016
  • In this work, we suggest a new system of generalized nonlinear regularized nonconvex variational inequalities in a real Hilbert space and establish an equivalence relation between this system and fixed point problems. By using the equivalence relation we suggest a new perturbed projection iterative algorithms with mixed errors for finding a solution set of system of generalized nonlinear regularized nonconvex variational inequalities.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.