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AN ITERATIVE METHOD FOR EQUILIBRIUM PROBLEMS,
VARIATIONAL INEQUALITY PROBLEMS AND FIXED
POINT PROBLEMS
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ABSTRACT. In this paper, we introduce an iterative scheme for finding a
common element of the set of fixed points of a nonexpansive mapping,
the set of solutions of the variational inequality for an inverse-strongly
monotone mapping and the set of solutions of an equilibrium problem in a
Hilbert space. We show that the iterative sequence converges strongly to
a common element of the three sets. The results of this paper extend and
improve the corresponding results announced by many others.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, re-
spectively. Let C a nonempty closed convex subset of H and let Pc be the
metric projection of H onto C. Recall that A mapping S : C — C is called
nonexpansive if

1Sz — Syl < [l -yl

for all z,y € C. We denote by F(S) the set of fixed points of S. Recall that a
mapping A : C — H is called monotone if for all z,y € C,
(x —y, Az — Ay) > 0.

Recall that a mapping A : C — H is called inverse-strongly monotone if there
exists a positive real number « such that

(x —y, Az — Ay) > af| Az — Ay|?
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for all z,y € C; see [4,8,14]. For such a case, A is called a-inverse-strongly
monotone. If A is an a-inverse-strongly monotone mapping of C into H, then
it is obvious that A is 1/a-Lipschitz continuous.

The classical variational inequality problem is to find a v € C such that
(v—u, Au) > 0 for all v € C. We denoted by VI(A, C) the set of solutions of the
variational inequality problem. The variational inequality has been extensively
studied in the literature. See (2,3,12,13,15] and the references therein.

Let F be a bifunction of C' x C into R, where R is the set of real numbers.
The equilibrium problem for F : C x C' — R is to find z € C such that

F(z,y)>0 forallyeC. (1.1)

‘The set of solutions of (1.1) is denoted by EP(F). Given a mapping 7 : C — H,
let F(z,y) = (Tz,y ~ z) for all 2,y € C. Then, z € EP(F) if and only if
(Tz,y—2) > 0for all y € C, i.e, 2 is a solution of the variational inequality.
Numerous problems in physics, optimization and economics reduce to find a
solution of (1.1). Some methods have been proposed to solve the equilibrium
problem; see, for instance, [5,6,12,13].

For finding an element of F(S)(\VI(C, A), Takahashi and Toyoda. [16] intro-
duced the following iterative scheme: z; € C and

ZTpt1 = Opln + (1 — an)SPo(zn — MAzy), n21 (1.2)

and obtain a weak convergence theorem in a Hilbert space. Recently, liduka and
Takahashi [7) proposed a new iterative scheme: z; = z € C and

Zn+1 = QT + (1 — 0n)SPo(2n — ApAzys), n>1 (1.3)

and obtained a strong convergence theorem in a Hilbert space.
On the other hand, for finding an element of EP(F) N F(S), Takahashi and
Takahashi [13] introduced the following iterative scheme by the viscosity approx-
imation method in a Hilbert space: z; € H and
F(unay)_{_%(y—unyunﬂxn) 207 VyECs (1 4)
Tpt1 = & f(zn) + (1 — ap)SUy, n2>1,

for all n € N, where {a,} C [0,1] and {r,} C (0, c0) satisfy some appropriate
conditions. Further, They proved {z,} and {u,} converge strongly to z €
F(S) M EP(F), where z = PF(s)nEp(F)f(z).

Very recently, Su et al. [12] introduced a new iterative scheme for finding a
common element of F(S) NVI(C, Ayn EP(F) given as follows: z; € H and

F(un, ) + (Y = tn,un — za) > 0, Vy € C,
Znt1 = onf(Tn) + (1 — 0n)SPo(un — Apduy), n> 1.
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In this paper, motivated and inspired by the above results, we introduce a
new following iterative scheme: z; € H and

F(un,y) + %(y‘“umun —zp) 20, Yy e C,
Tp41 = anf(mn) + Bnzn + ’YnSPC(un - )\’nAun)a n2>1,

for finding a common element, of the set of fixed points of a nonexpansive map-
ping, the set of solutions of a variational inequality for an a-inverse-strongly
monotone mapping and the set of solutions of an equilibrium problem in a real
Hilbert space. Furthermore, we show the iterative sequences {z,} and {u,} con-
verge strongly to z € F(S)NVI(C, AYNEP(F), where z = Pr(s)nv1(C,A)nNEP(F)
f(2). The results of this paper extended and improved the results of liduka and
Takahashi [7], Takahashi and Takahashi [13] and Su et al. [12].

(L.5)

2. Preliminaries

Let H be a real Hilbert space with inner product (,-) and norm || - ||, respec-
tively. It is well known that for all z,y € H and A € [0,1] there holds

e + (1= Nyl* = Mz)* + @ = Nllyll® = A1 = V= - yl*.

Let C be a nonempty closed convex subset of H. We denote by ”—" strong
convergence and ”—” weak convergence. For every point z € H, there exists a
unique nearest point in C, denoted by Poz, such that

lz — Pox| < llz -yl forallyeC.

P is called the metric projection of H onto C. We know that P¢ is a nonex-
pansive mapping of H onto C. It is also known that P satisfies

|Poz — Poyll? < (Poz — Poysz — ), (2.1)
for every z,y € H. Moreover, Pcx is characterized by the following properties:
Pecx € Cand (x— Pox,Pcx—y) >0, forally € C.

In the context of the variational inequality problem, this implies that
u € VI(C, A) & u = Po(u — Au), forall A>0. (2.2)

A space X is said to satisfy Opial’s condition [9] if for each sequence {zn}nZ4
in X which converges weakly to point z € X, we have

liminf ||z, — z|| < liminf ||z, —y|, Yy € X, y # =
n—00 n—o0

A set-valued mapping T : H — 2H is called monotone if for all z,y € H, f €
Tz and g € Ty imply {x —y, f — g) > 0. A monotone mapping T': H — 2H ig
maximal if the graph G(T') of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping 7" is maximal
if and only if for (x, f) € H x H,(x —y, f—g) > 0 for every (y,g) € G(T) implies
f € Tz. Let A be an inverse-strongly monotone mapping of C into H and let
New be the normal cone to C at v € C, i.e.,

Nev={we H:{v—u,w)>0,VueC}
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and define

0, v ¢ C.
Then T is maximal monotone and 0 € T'v if and only if v € VI(C, A); see [10,11].
For solving the equilibrium problem for a bifunction F : C x C — R, let us
assumne that F satisfies the following conditions:
(Al) F(z,z) =0 for all z € C;
(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 forall z,y € C;
(A3) for each z,y,2 € C,

%m(tz + (1 -t)z,y) < F(z,y);

To = {Av—i—Nm), veC,

(A4) for each z € C, y — F(z,y) is convex and lower semicontinuous.

We need the following lemmas for the proof of our main results.

Lemma 2.1 [18].Let {z,} and {y,} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0,1] with 0 < Hminf, oo Bn < limsup, o < 1.
Suppose Tn1 = (1=LBn)Yn+BnTy for all integersn > 0 andlimsup,, o (lyn+1—
Ynll = |1 — Tnll) 0. Then, limy oo fiyn ~ zall = 0.

Lemma 2.2 [{17]. Assume {an} i3 o sequence of nonnegative real numbers such
that :

Qnt1 < (1 - 'Yn)an + 511,; n >0,
where {n} is a sequence in (0,1) and {8,} is a sequence in R such that
(6) Somet Y = 00; |
(i) Hmsup, o 6n/Yn <0 or Y oo, |6n) < 00.
Then limy, 00 ap = 0.

Lemma 2.3 [1]. Let C be a nonempty closed convex subset of H and let Fbea
bifunction of C x C into R satisfying (A1) — (A4). Letr >0 and x € H. Then,
there exists z € C such that

Fle)+ 1y ~2,2-2) 20, Yy C.

Lemma 2.4 [6]. Assume that F : C x C — R satisfies (A1) — (A4). Forr >0
and x € H, define a mapping T, : H — C as follows:
T(z)={2€C: Flz,9) + %(y—~ z,z2—1z) >0, Yy e C}

for allz € H. Then, the following hold:
(1) T, is single-valued;
(2) T, is firmly nonexpansive, i.e., for any z,y € H,
“T,-:IZ - Trynz < <Tr$ ~ Doy, - y);
() F(T;) = EP(F);
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(4) EP(F) is closed and convez.
3. Main results

In this section, we introduce an iterative method by the viscosity approxi-
mation method for finding a common element of the set of fixed points of a
nonexpansive mapping, the set of solutions of the variational inequality for an
inverse-strongly monotone mapping and the set of solutions of an equilibrium
problem in a Hilbert space. We show that the iterative sequence converges
strongly to a common element of the three sets.

Theorem 3.1. Let C be a nonempty closed conver subset of a real Hilbert space
H. Let F be a bifunction from C x C to R satisfying (A1) ~ (A4) and S be a
nonexpansive mapping of C into H. Let A be an a-inverse-strongly monotone
mapping of C into H such that F(S)NVI(C,A)NEP(F) # §. Let f be a
contraction of H into itself and let {x,} and {u,} be sequences generated by
(1.5), where {an}, {Bn} and {v,} are three sequences in [0,1], {A,} C [0,2¢]
and {r,} C (0,00) satisfy the following conditions:

(1) an+Bn+m=1,

(2) limip 00 atn = 0, Zzozl QAp = 00,

(3) 0 <liminfp_,o0 Bn < limsup,_,o B < 1,

(4) {An} Cla,b] for some a,b € (0,2a) and limp—, 00 |Ans+1 — An| =0,

(6) liminf, o0 7 > 0 and limy, o |Tnyt — o] = 0.
Then {zn} and {un} converge strongly to z € F(S)NVI(C,A)n EP(F), where
z = Ppsynvic,anepr) f(2).

Proof. Let Q = Pr(synep(F)nvI1(c,4)- Then Qf is a contraction of H into C. In
fact, there exists a € [0, 1) such that || f(z) — f(¥)|| < allz —y]| for all z,y € H.
So, we have that

1Qf(@) = QI < |If (=) - fW)]| < allz -yl

for all z,y € H. So, Qf is a contraction of H into C. Since H is complete, there
exists a unique element of C, such that z = Qf(z). Such a z € H is an element
of C. For all z,y € C and A, € [0, 2q],

17 = And)z — (I = AnA)y|l? = |l(z — y) — An(Az — Ay)|)®
=z —y|” - 2:\n{z — y, Az — Ay) + A7 || Az — Ay|f?
<z =yl + An(An - 20) || Az ~ Ay||2
<llz =9l
which implies that I — X, A is nonexpansive. Let v € F(S)NEP(F)NVI(C, A).
Then v = Pg(v — AAdv), for all A > 0. Put wy, = Polu, — Ay Auy), for alln > 1.

We compute that
lwn — || = || Po(un — AnAun) — Po(v — A Av)||

< [[(tn — AnAun) — (v — A Av))| (3.2)
< llun =i,

(3.1)
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From uy = T, ¢y, we have
lun — o)) = T, 2n — Tr, 0| < ||2n — v, for all n > 1. (3.3)
Then we compute that
[Zn41 =] = lan(f(@n) = v) + Bn(@n — v) + W (Swn — V)|l
< anl|f(@n) = vl + BullTn — v]| + Wllwa — vl
< analjzn — vl + onl| f(v) — vl + (1 — an)l|zn — o]

1
50 ol

< max{(|z, - o]
By induction, we get
Iz ~ ol < max{lar — vl 7= /() ol}}, 7.2 1

Therefore, {z,} is bounded. {u,}, {Swn} and {f(z,)} are also bounded. Next,
we show that §|z,41 — Zp|| — 0 as n — 0. Since I — A, A is nonexpansive, we
have

s = wall = 1P — A1 AYttns) = Pol(I = AnA)un]l
ST = Anp1A)ungy — (I — ApA)unl|
S = A1 A)unts — (I = M1 A)nl + [An = Ansa [[| Ava|
< unt1 = unll + [An = Anyrlfl Aual.

On the other hand, from u, =T, 2y, and up41 = T;,,, Tnt1, We have (-4
Flun,y) + i(y—un,un—xn) >0 forallyeC (3.5)

and
F(uny1,y) + Tnl-n (Y — Unt1,Ung1 — Zpy1) =0 forallyeC (3.6)

Putting y = ¢n41 in (3.5) and y = u, in (3.6), we have
1
F(um un-{—l) + ;“(un-{—l = Unp,y Up — xn) >0
n

and Fluns1,un) + ;f;(un — Unp1s Unt1 — Tns1) > 0. So, from (A2) we have

_ Up=Tp _ Untl=Lnil
(Unt1 — Uy, 2200 el Eedl } > 0 and hence

Tn

(Un+1 = Un, Up = Up41 + Unq1 — Tn — - (Un41 = Tns1)) 2 0.

n+1
Without loss of generality, let us assume that there exists a real number b such
that rp, > b > 0 for all n € N. Then, we have

Tn

)(un+l - xn-{-l))

Tn

Nuntr — tnll® < (Untt = Un, Tng1 — Tp + (1 —
Tn+1

< mts = unll{lzns1 = @nll + 1 = ——|lluns1 = Tntall}

Tn+1
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and hence

Nunt1 = unll < |Tnt1 — zall + [T+t — Tnllltnt1 — Tol

;n—i—l (3.7)
S Mzns1 = @nll + Fl7rnes = ralLs
where L = sup{||un — z,|| : » € N}. From (3.4) we have
1
“wn—H - wn“ < Hxn—H - xn“ + ‘Elrn-}—l - Tn|L + |>\n - )\n+1|HAUnH (3'8)

Define 2,41 = (1 — Bn)yn + BnZn, n > 0. Observe that from the definition of
Yn, We obtain

Tnt2 — Buy1Tni1 _ Tp4l — BnTn

Yn+1 — Yn = 1— Bnit 1— Bn
_ a1 f(@ng1) + Wnt1SWng1  onf(@n) + 90 SWn
1-— ﬂn+1 1- B’n
1 f(@nt1)  onf(Tn) | a1 Tn
1= Bt 1= B0 1 frr T 1=8"
an+1f($n+1) anf(mn) a"+1
= - + (1 — ———)(Swn41 — Swy
1-Bnn1 1—75n ( 1= Bn+1 J(Swni n)
+ (7o — =) S,

1- ﬂn a 1- /Bn—}-l
Combining (3.8) and (3.9), we have

[Yn+1 = Ynll = 241 — znll
Qpt1 Oy, Ont1
< e — T -+ T (1 = —2 |l —w
1_ﬁn+1 ”f( n+1)“ 1_/8n ”f( n)” ( 1‘ﬂn+1)“ n+1 n“
Qn Qp+t1
* |1 - ﬂn 1-— ﬁn+1 |||S’U)n” “zn—i-l x"”
Uil o it
< g @)+ 5 M@l = T e = el
n n n
. a Qn+1
+ Z|7'n+1 — 7oL+ | An — Apg1 ||| Attnl| + | - _nﬂn -1 —nﬂn+1 || Swall.

This together with the conditions (2)-(5) implies that
limsup({|yn+1 = Ynll = [Znt1 = 2al)) < 0.
n—oo

Hence using Lemma 2.1 , we have limy, o ||yn — Zn|| = 0. Consequently, we can
obtain

lim [|Zn41 — Znll = Lim (1 = Ba)llyn — 2n] = 0. (3.10)
n—00 n—oo

From (3.7) and Y07, |rn41 — Tn| < 00, we have limy o0 [|tn41 — Un|| = 0. From
(3.4) and 307 | [Ang1 — An| < 00, we also have

lim ||wp41 — wy|| =0. (3.11)
n—o0



168 Meijuan Shang and Yongfu Su
Next we show || Sw, —wy| — 0, as n — oo. First, we show ||z, — Sw,]| — 0, as
n - 00. t Notice that
lzn — Swall < fl2n — Swp-1]| + [|Swn—1 ~ Swy|
< on-1[[f(@n-1) — Swn_1]| + lwn — wa_1.
From oy, — 0 and (3.11), we get
lim ||z, — Sw,| = 0. (3.12)
n—oc

In sequence, we show [[p — up|| — 0, as n — oco. For v € F(S) N FP(F)N
VI(C, A), we have
lun =0l = |Tr 2 = Tro0ll* < (Tr, 20 — Tr, 0,20 — 0)
= (Up — U, Tp, — V)

1
= 5 (llun = vl + ll&n = vl|* - Jun — zal|*)

and hence [[un — v||? < ||z5 — v||2 = ||z — un]|?. Therefore, from the convexity
of || - ||2, we have
lZns1 = vI* = lanf(zn) + Buzn + MmSwy — v||?
< anl|f(@n) = vl* + Ballzn — ol + wmllun — vf?
< anl| f(zn) = vl* + Ballen — ol + m(lzn = v ~ 20 — unl|?)
= anl|f(zn) = vl + (1 - an)zn — olf* — Wmllzn — unl?
and hence
TollZn — ual® ,
< onllf(@n) =l + llzn = )1 = llznss = ol
< anllf(@n) = vlf* + 20 — Zas1l| (|20 — 0] + [En41 = v]).
So, from (3.10) and condition (1)-(3), we have

l£n — unll = 0, asn — oco. (3.13)

Next we show ||up — wy| — 0. For v € F(S)NFP(F)yNVI(C, A), we compute
that

IZa+1 — ol

< anl| f(zn) — Uiiz + Bnllzn — UHZ + Y llwn — 'UHZ

< anllf(za) = vl* + Bullzn — > + 9l (T = AnA)un — (I = AnA)v?

< ol f(@n) = vl + Ballen — vl|* + Ya(llun — v} + An(An — 20)|| Aun — Av||?)
< anflf(@n) = 0l + (1 = an)lizn — v|* + a(b - 20)| Aun — Av|l?
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Therefore, we have
— a(b - 20)|| Au, — Avl|?
< anf| f@n) =l + llzn = 0)* ~ lZn4s — ol
< anllf(zn) = v? + (|2 = 0] + 2041 — v])|Zns1 = 2all-
Since ap, — 0, a,b € (0,20) and ||xpy1 — zp|| — 0, we obtain
lim ||Au, — Av|| =0. (3.14)
From (2.1), we have
lwn = v} = [[Po(un — AnAun) = Po(v — A Av)||?
< A(up — AndAug) — (v — A Av), wy, — v)
1
= S{ll(un = AnAug) = (v = A A0)[|* + [lwn — v|?
2
= [lun — AnAun) — (v — AnAv) — (wn — )%}

IA

1
5 Ulun = vl* + llwp = ]| = [ (un — wn) = An(Aun — Av)|*}

1
5 Ul = o + lwn — 0] = flun — wa?

+ 2ty — W, Aty — Av) — N2 || Auy, — Ao}

So, we obtain
llwn — v]|?
< tn = 0|2 = |Jtin, — wal|? + 220 (tn — wp, Auy, — Av) — X2|| Auy, — Av|?.
Hence, we have
[2n41 = vl” = llanf(@n) + Bn@n + YaSws —v||?
< an|f(@n) = 0l* + Ballzn — v]* + Y lwn — vl|?
< anllf(@n) = vl* + Ballzn — ol® + A ((lun — V)2 = [lun — wall?
+ 22 (U, — W, Aty — Av) — N2 || Auy, — Av|?)
< an|f(@n) = vl|* + 120 = 0l* = un — wn®
+ 290 An (U, — W, Aun — Av) — M2, || Auy — Av||®.
From a,, — 0, (3.10) and (3.14), we obtain
Jim |un — wn| = 0. (3.15)

From [|Swy, — wy|| < ||Swn — 2] + [|Tn — un|l + |Jun — wx]|, we obtain

lim ||Swy, —wy|| =0. (3.16)
n—oo
Next we show that
limsup{f(z) — z,2, — 2) <0, (3.17)

n—00
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where z = Pr(s)nvi(c,a)nEp(F) f(2). To show it, choose a subsequence {wn,} of
{wn} such that
limsup(f(z) — 2z, Sw, — z) = lim (f(2) — 2, Swn, — 2).
N—CO 1—00
As {wn,} is bounded, we have that a subsequence {wn, } of {wn,} converges
weakly to w. We may assume without loss of generality that wy,;, — w. From
(3.16), we obtain Sw,, — w. Then we can obtain w € F(S)NVI(C, A)NEP(F).
In fact, let us first show that w € VI(C, A). Define

Tv = Av + Nov, wveC,
1o, véC.

Then T is maximal monotone. Let (v,u) € G(T'). Since u — Av € Ngv and
wp, € C, we have (v — wn,u — Av) > 0.

On the other hand, from wy, = Po(un — ApAuy), we have (v —wy, Wy, — (tn —
AnAup)) 2 0 and hence (v — wn, ¥57%2 + Au,)) > 0. Therefore, we have

(v — wp,,u) > (v —wy,, Av)

2 ('U - wnmAv) - ([U = Wn,, M + Aum)
Ans
= (v — wp,, Av — Auy, — 22" Uiy
)\ni
Wr,; = U,
= (v — Wn,, AV — Awy,) + (v — Wy, Awn, — Alp,) — (v — Wp,, —‘T——’)
s

22
Wp,; — Un,;

)\n-

13

>,

which together with ||w, — un|| — 0 and A is Lipschitz continuous implies
that (v — w,u) > 0. Since T is maximal monotone, we have w € 7710 and
hence w € VI(C, A). Next, let us show that w € F(S). Assume weF{(S). Since
Wp, — w and Sw # w, from Opial’s condition, we have

> (v — Wn,, AWn, — Aug,) — (U — wy,,

lim inf ||w,, — w]} < liminf jw,, — Sw|| = iminf |Jw,, — Swp, + Swy, — Sw||
100 33— 00 1—0C
= liminf || Sw,, — Sw|| < liminf ||wn, — w||.
T OO Fr OO

This is a contradiction. Thus, we obtain w € F(S). Finally, we show that
w € EP(F). By uy, = T, z,, we have ‘

1
F(un,y) + ;’"(y = U, Up — Tp) 2 0, Yy € C.
n
From (A2), we also have %(y — Up,Up — Tn) > F(y,u) and hence (y —
u""rj"' y 2 Fy, un,). Since {juy, —wy| — 0 and wy, — w, we have u,, — w.
It together with ||z, — uy|| — 0 and (A4) implies that 0 > F(y,w) forally € C.

Uny»
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Fort withO<t<landye C,let y; =ty + (1 —t)w. Sincey € C and w € C,
we have y; € C and hence F(y:, w) < 0. So, from (A1) and (A4), we have
0= F(ys,y) <tF(ys, ) + (1 — )F (g1, w) < tF (v, y)

and hence 0 < F(y;,y). From (A3), we have 0 < F(w,y) for all y € C and
hence w € EP(F). Therefore w € F(S) N EP(F)n VI(C,A). Since z =
Pr(s)nep(F)nvic,a) f(z), we have

limsup(f(z) — z, 2, — 2z) = limsup(f(z) — 2z, Sw, — 2)

n—oo n—oo
= lim (f(2) — z, Swn, — 2) = (f(2) —z,w — 2) <0.
11— 00
For all n > m, we have
[Tn1 — 2|
= <anf(5’7n) + BnZn + WSwn — 2, Tyl — z)

= Oln<f(£L’n) — %, Tn+1 — z) + ﬂn(xn =~ 2y Tp+1 — Z>
+ ¥ (Swn — 2, Znt1 — 2)

—_

< gana(zn = 2 + lzns1 — 21%) + on(f(2) = 2,201 — 2)

(1 = an)(llzn = 21* + l|zn41 — 2]1%)

N =

>
+

< 5= a)awllan — 2 + 3 Jznsa — 2l + cnlf(2) — 2 nsr — 2
which implies that

lznsr — 2l <[1 = (1 = a)om]llon — 2| + 20m(f(2) = 2, Tn41 — 2)-

Finally by using condition (2), (3.17) and Lemma 2.1, we can obtain z,, — 2z =
Ppsynep(F)nvi(c,a)f(2), as n — oo. This completes the proof. a

4. Applications
From Theorem 3.1, we have the following results immediately.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A be an a-inverse-strongly monotone mapping of C into H and let S be
a nonexpansive mapping of C into H such that F(S)NVI(C,A) # 0. Let f be
a contraction of H into itself. Suppose 1 € H and {z,} is given by

Tnt1 = anf(zn) + (1 — an)SPo[(I — A\A)Pozy), n>1,
where {an} C [0,1) and {\} C [0,20¢] satisfy the following conditions
(1) limpooon =0, Yoo an =00 and Yoo 4 |@nt1 — an| < 00,
(2) {M} C la,b] for some a,b € (0,20) and > ooy [An+1 — An| < 0.
Then {z,} converges strongly to z € F(S)NVI(C, A), where z = Pp(s)nv1(C,A)
f(z).
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Proof. Put F(z,y) =0forallz,y € C, B, =landr, =1forailln € Nin
Theorem 3.1. Then, we have u, = Pcoz,. So, by Theorem 3.1, we can conclude
the desired conclusion easily. 0

Remark 4.2. Putting f(y) = z € C for all y € H and S be a nonexpansive
mapping of C in Corollary 4.1, we have Pozy, = z,. So, Theorem 3.1 in liduka
and Takahashi’s [7] can be directly obtained.
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