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AN ITERATIVE METHOD FOR SOLVING EQUILIBRIUM

PROBLEM FIXED POINT PROBLEM AND GENERALIZED

VARIATIONAL INEQUALITIES PROBLEM

Lijuan Zhang and Juchun Li

Abstract. In this paper, we introduce a new iterative scheme for finding

a common element of the set of an equilibrium problem, the set of fixed
points of nonexpansive mapping and the set of solutions of the generalized

variational inequality for α-inverse strongly g-monotone mapping in a

Hilbert space. Under suitable conditions, strong convergence theorems
for approximating a common element of the above three sets are obtained.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H. Recall that a
self-mapping f : C → C is Lipschitz continuous on C if there is a constant
k > 0 such that ‖f(x) − f(y)‖ ≤ k‖x − y‖, x, y ∈ C; if k = 1, the mapping is
called nonexpansive. We denoted by F (f) the set of fixed pints of f .

Let A : C → H, g : C → C two nonlinear operators. We consider a
generalized variational inequality (GVI) problem as follows: to find u ∈ C,
g(u) ∈ C such that

〈g(v)− g(u), Au〉 ≥ 0. (1.1)

The set of solutions of above variational inequality (which is called Noor [1]
variational inequality) problem is denoted by GV I(C,A, g). Such a problem is
connected with the convex minimization problem, the complementarity prob-
lem, the problem of finding a point u ∈ H satisfying 0 = Au and so on. An
operator A of C into H is said α-inverse-strongly g-monotone if there exists a
positive real number α such that

〈g(u)− g(v), Au−Av〉 ≥ α‖Au−Av‖2
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for all u, v ∈ C. It is obvious that A is continuous when g is continuous. The
operator g : C → C is said to be strongly monotone if and only if there exists
γ > 0 such that

〈g(u)− g(v), u− v〉 ≥ γ‖u− v‖2

for all u, v ∈ C.
By the strong monotonicity of g with constant γ > 0, we have

‖g(u)− g(v)‖‖u− v‖ ≥ 〈g(u)− g(v), u− v〉 ≥ γ‖u− v‖2.
That is,

‖g(u)− g(v)‖ ≥ γ‖u− v‖, (1.2)

thus, the above formula implies that g−1 is single-valued operator and

‖g−1(u)− g−1(v)‖ ≤ 1

γ
‖u− v‖.

When R(g) = C, g is bijective on C, and g−1 is Lipschitzian continuous. For
g = I, where I is the identity operator, problem (1.1) is equivalent to finding
u ∈ C, such that

〈v − u,Au〉 ≥ 0,∀v ∈ C,
which is known as the classical variational inequality introduced and studied
by Stampacchia [2] in 1964, the set of solutions of above variational inequality
problem is denoted by V I(C,A).

Let F be a bifunction of C × C into R, where R is the set of real numbers.
The equilibrium problems for F : C × C → R is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (1.3)

The set of solution of (1.1) is denoted by EP (F ). Given a mapping T : C → H,
let F (x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then, x̂ ∈ EP (F ) if and only if
〈T x̂, y − x̂〉 ≥ 0 for all y ∈ C, i.e., x̂ is a solution of the variational inequality.
Numerous problems in physics, optimization, and economics reduce to find a
solution of (1.3). Some methods have been proposed to solve the equilibrium
problems.

Very recently, L.Zhang et al [3] introduce an iterative scheme by the general
iterative method: arbitrary initial x0 ∈ C,

g(xn+1) = αnf(xn) + (1− αn)SPC(g(xn)− λnAxn).

We will prove that if the sequence {αn} satisfies appropriate conditions, then
the sequence {xn} converges strongly to the unique solution of the variational
inequality

〈g(q)− f(q), g(q)− g(p)〉 ≤ 0, p ∈ g−1(F (S)) ∩GV I(C,A, g).

Y. Su et al [4] introduce an iterative scheme given as follows: x0 ∈ H andF (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)SPC(un − λnAun).
(1.3)
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for all n ∈ N , where {αn} ∈ [0, 1] and {rn} ⊂ (0,∞) satisfy some appropriate
condition. Furthermore, they proved that {xn} and {un} converge strongly to
z ∈ F (S) ∩ V I(C,A) ∩ EP (F ).

In this paper, motivated and inspired by the above results, we introduce an
iterative scheme given as follows: x1 ∈ H andF (g(un), y) +

1

rn
〈y − g(un), g(un)− g(xn)〉 ≥ 0, ∀y ∈ C,

g(xn+1) = αnf(xn) + (1− αn)SPC(g(un)− λnAun).
(1.4)

for all n ∈ N , where {αn} ∈ [0, 1] and {rn} ⊂ (0,∞) satisfy some appropriate
condition. Furthermore, they proved that {xn} and {un} converge strongly to
q ∈ g−1(F (S)) ∩ g−1(EP (F )) ∩GV I(C,A, g).

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and
let C be a closed convex subset of H. We write xn ⇀ x to indicate that the
sequence {xn} converges weakly to x. xn → x implies that {xn} converges
strongly to x. For every point x ∈ H, there exists a unique nearest point in C,
denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖

for all y ∈ C. PC is called the metric projection of H to C. It is well known
that PC satisfies :

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (2.1)

for every x, y ∈ H, and PC is characterized by the following properties:

〈x− PCx, PCx− y〉 ≥ 0, (2.2)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 (2.3)

for all x ∈ H, y ∈ C. In the context of the variational inequality problem, this
implies

u ∈ V I(C,A, g)⇔ g(u) = PC(g(u)− λAu),∀λ > 0. (2.4)

We have the following Lemma.

Lemma 2.1. ([3]) Let C be a closed convex subset of a real Hilbert space H,
for all x, y ∈ C and λ > 0, if λ ≤ 2α. Then the following inequality holds:

‖PC(g(x)− λAx)− PC(g(y)− λAy)‖ ≤ ‖g(x)− g(y)‖.

A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈
Tx and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H

is maximal if graph G(T ) of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping T is maximal
if and only if for (x, f) ∈ H × H, 〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G(T )
implies f ∈ Tx.
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Let g : C → C and ϕ : C → R ∪ {+∞}. A vector w ∈ H is called a
g-subgradient of ϕ at x ∈ domϕ. If 〈g(y) − g(x), w〉 ≤ ϕ(y) − ϕ(x), for all
y ∈ C. Each ϕ can be associated with the following g-subdifferential mapping
∂gϕ defined by

∂gϕ(x) =

{
w ∈ H : 〈g(y)− g(x), w〉 ≤ ϕ(y)− ϕ(x),∀ y ∈ C}, x ∈ C,
∅, x /∈ C.

Let NC(v) = {w ∈ H : 〈g(v) − g(u), w〉 ≥ 0,∀u ∈ C}. When g = I, NC(v) be
the normal cone to C at v ∈ C.

Lemma 2.2. ([3]) Let C be a closed convex subset of a real Hilbert space H,
and A an α-inverse-strongly g-monotone operator of C into H. Assume that
g : C → C is bijective mapping with R(g) = C. Let T be an operator defined
as follows:

Tv =

{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal g-monotone and T−10 = GV I(C,A, g).

For solving the equilibrium problem for a bifunction F : C × C → R, let us
assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Lemma 2.3. ([5]) Let C be a nonempty closed subset of H and F be a bifunc-
tion of C × C into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there
exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0,∀y ∈ C.

Lemma 2.4. ([6]) Assume that F : C×C → R satisfies (A1)-(A4). For r > 0
and x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0,∀ y ∈ C}

for all x ∈ H. Then the following hold:
(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Tr(x)− Tr(y)‖2 ≤ 〈Tr(x)− Tr(y), x− y〉;
(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.
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Lemma 2.5. ([7]) Let C be a closed convex subset of a real Hilbert space H and
let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅. If a sequence
{xn} in C is such that xn ⇀ z and xn − Txn → 0, then z = Tz.

Lemma 2.6. ([8]) Let {sn} be a sequence of nonnegative real numbers such
that:

sn+1 ≤ (1− λn)sn + βn, n ≥ 0,

where {λn}, {βn} satisfy the conditions:
(i) {λn} ⊂ (0, 1) and

∑∞
n=1 λn =∞,

(ii) lim supn→∞
βn

λn
≤ 0 or

∑∞
n=1 |βn| <∞. Then limn→∞ sn = 0.

3. Main result

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F be a bifunction from C × C to R satisfying (A1)-(A4), Let
f : C → C is Lipschitz continuous with coefficient k (0 < k), and g : C → C
is strongly monotone and weakly continuous with coefficient γ (k < γ) and
R(g) = C, and A an α-inverse-strongly g-monotone mapping of C into H and
let S be a nonexpansive mapping of C into itself such that Ω = g−1(F (S)) ∩
g−1(EP (F ))∩GV I(C,A, g) 6= ∅. Suppose {xn} be sequences generated by (1.4)
for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] and {αn} is sequence in (0, 1). If
{αn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with 0 < a < b < 2α,
lim infn→∞ rn > 0 limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

∑∞
n=1 |αn+1 − αn| <

∞,
∑∞
n=1 |λn − λn+1| < ∞,

∑∞
n=1 |rn − rn+1| < ∞. Then {xn} defined in

(1.4) converges strongly to q ∈ Ω, which is the unique solution in the Ω to the
following variational inequality

〈f(q)− g(q), g(p)− g(q)〉 ≤ 0, ∀ p ∈ Ω.

Proof. Put yn = PC(g(un) − λnAun) for every n = 0, 1, 2, .... Let u ∈ Ω. By
(2.4) and Lemma 2.1, we have

‖yn − g(u)‖ = ‖PC(g(un)− λnAun)− PC(g(u)− λnAu)‖
≤ ‖(g(un)− λnAun)− (g(u)− λnAu)‖
≤ ‖g(un)− g(u)‖.

From g(un) = Trng(xn), we have

‖g(un − g(u)‖ = ‖Trng(xn)− Trng(u)‖ ≤ ‖g(xn)− g(u)‖

for every n ≥ 1. Then we compute that

‖g(xn+1)− g(u)‖ = ‖αnf(xn) + (1− αn)Syn − g(u)‖
≤ αn‖f(xn)− g(u)‖+ (1− αn)‖Syn − g(u)‖
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≤ αn‖f(xn)− f(u)‖+ αn‖f(u)− g(u)‖+ (1− αn)‖yn − g(u)‖
≤ αnk‖xn − u‖+ (1− αn)‖g(xn)− g(u)‖+ αn‖f(u)− g(u)‖

≤ αnk

γ
‖g(xn)− g(u)‖+ (1− αn)‖g(xn)− g(u)‖+ αn‖f(u)− g(u)‖

= (1− (1− k

γ
)αn)‖g(xn)− g(u)‖+ αn‖f(u)− g(u)‖

≤ max{‖g(xn)− g(u)‖, 1

1− k
γ

‖f(u)− g(u)‖}.

By induction,

‖g(xn)− g(u)‖ ≤ max{‖g(x0)− g(u)‖, 1

1− k
γ

‖f(u)− g(u)‖}, n ≥ 0.

Therefore, {g(xn)} is bounded. By (1.2), we have {xn} is bounded. From the
property of g,A, S, f , we have {yn},{Syn}, {Axn}, {f(xn)} are also bounded.
By (2.4), we have

‖yn+1 − yn‖ ≤ ‖g(un+1)− λn+1Aun+1 − (g(un)− λnAun)‖
≤ ‖g(un+1)− λn+1Aun+1 − (g(un)− λn+1Aun)‖

+ |λn − λn+1|‖Aun‖
≤ ‖g(un+1)− g(un)‖+ |λn − λn+1|‖Aun‖

for every n = 0, 1, 2, .... So we obtain

‖g(xn+1)− g(xn)‖
= ‖αnf(xn) + (1− αn)Syn − αn−1f(xn−1)− (1− αn−1)Syn−1‖
= ‖(αn − αn−1)(f(xn−1)− Syn−1) + (1− αn)(Syn − Syn−1)

+ αn(f(xn)− f(xn−1))‖
≤ |αn − αn−1|‖f(xn−1)− Syn−1‖+ (1− αn)‖yn − yn−1‖

+ αnk‖xn − xn−1‖
≤ (1− αn)(‖g(un)− g(un−1)‖+ |λn−1 − λn|‖Aun−1‖)

+ |αn − αn−1|‖f(xn−1)− Syn−1‖+ αn
k

γ
‖g(xn)− g(xn−1)‖

≤ k

γ
αn‖g(xn)− g(xn−1)‖+ (1− αn)‖g(un)− g(un−1)‖

+ (|λn − λn−1|+ |αn − αn−1|)M
for every n = 0, 1, 2, ..., where

M = max{sup{‖Aun‖ : n ∈ N}, sup{‖f(xn)‖+ ‖S(yn)‖ : n ∈ N}}.
On the other hand, from g(un) = Trng(xn) and g(un+1) = Trng(xn+1), we

have

F (g(un), y) +
1

rn
〈y − g(un), g(un)− g(xn)〉 ≥ 0 (3.1)
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for all y ∈ C, and

F (g(un+1), y) +
1

rn+1
〈y − g(un+1), g(un+1)− g(xn+1)〉 ≥ 0 (3.2)

for all y ∈ C. Putting y = g(un+1) in (3.1) and y = g(un) in (3.2), we have

F (g(un), g(un+1)) +
1

rn
〈g(un+1)− g(un), g(un)− g(xn)〉 ≥ 0

and

F (g(un+1), g(un)) +
1

rn+1
〈g(un)− g(un+1), g(un+1)− g(xn+1)〉 ≥ 0.

So, from (A2) we have

〈g(un+1)− g(un),
g(un)− g(xn)

rn
− g(un+1)− g(xn+1)

rn+1
〉 ≥ 0

and hence

〈g(un+1)−g(un), g(un)−g(un+1)+g(un+1)−g(xn)− rn
rn+1

(g(un+1)−g(xn+1))〉≥0.

Without loss of generality, let us assume there exist a real number m such that
rn ≥ m > 0 for all n ∈ N . Then, we have

‖g(un+1)− g(un)‖2

≤ 〈g(un+1)− g(un), g(xn+1)− g(xn) + (1− rn
rn+1

)(g(un+1)− g(xn+1))〉.

Observe that, we have

‖g(un+1)− g(un)‖ ≤ ‖g(xn+1)− g(xn)‖+ (1− rn
rn+1

)‖g(un+1)− g(xn+1)‖

≤ ‖g(xn+1)− g(xn)‖+
1

m
|rn − rn+1|L

where L = sup{‖g(un)− g(xn)‖ : n ∈ N}. So we have

‖g(xn+1)− g(xn)‖ ≤ (1− (1− k

γ
)αn)‖g(xn)− g(xn−1)‖+ (|λn − λn−1|

+ |αn − αn−1|)M +
L

m
|rn − rn+1|.

Since
∑∞
n=1 |λn−λn+1| <∞,

∑∞
n=1 |αn−αn−1| <∞ and

∑∞
n=1 |rn− rn+1| <

∞, in view of Lemma 2.6, we have limn→∞ ‖g(xn+1) − g(xn)‖ = 0. Then we
also obtain limn→∞ ‖g(un+1) − g(un)‖ = 0 and ‖yn+1 − yn‖ → 0. From the
definition of g(xn), we have

‖g(xn)− Syn‖ ≤ ‖g(xn)− Syn−1‖+ ‖Syn−1 − Syn‖
≤ αn−1‖f(xn−1)− Syn−1‖+ ‖yn−1 − yn‖,
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we have ‖g(xn)− Syn‖ → 0. For u ∈ Ω, we have

‖g(un)− g(u)‖2 = ‖Trng(xn)− Trng(u)‖2

≤ 〈Trng(xn)− Trng(u), g(xn)− g(u)〉
≤ 〈g(un)− g(u), g(xn)− g(u)〉

=
1

2
(‖g(un)− g(u)‖2 + ‖g(xn)− g(u)‖2 − ‖g(xn)− g(un)‖2)

and hence

‖g(un)− g(u)‖2 ≤ ‖g(xn)− g(u)‖2 − ‖g(xn)− g(un)‖2.

Therefore, from the convexity of ‖.‖2

‖g(xn+1)− g(u)‖2

= ‖αnf(xn) + (1− αn)Syn − g(u)‖2

≤ αn‖f(xn)− g(u)‖2 + (1− αn)‖yn − g(u)‖2

≤ αn‖f(xn)− g(u)‖2 + (1− αn)‖g(un)− g(u)‖2

≤ αn‖f(xn)− g(u)‖2 + (1− αn)(‖g(xn)− g(u)‖2 − ‖g(xn)− g(un)‖2)

≤ αn‖f(xn)− g(u)‖2 + ‖g(xn)− g(u)‖2 − (1− αn)‖g(xn)− g(un)‖2,

and hence

− (1− αn)‖g(xn)− g(un)‖2

≤ αn‖f(xn)− g(u)‖2 + (‖g(xn)− g(u)‖+ ‖g(xn+1)− g(u)‖)‖g(xn)− g(xn+1)‖.

So we have

‖g(xn)− g(un)‖ → 0, ‖xn − un‖ → 0.

Next we show ‖yn − g(un)‖ → 0, for u ∈ Ω, we compute that

‖g(xn+1)− g(u)‖2

= ‖αnf(xn) + (1− αn)Syn − g(u)‖2

≤ αn‖f(xn)− g(u)‖2 + (1− αn)‖yn − g(u)‖2

= αn‖f(xn)− g(u)‖2 + (1− αn)‖PC(g(un)− λnAun)− PC(g(u)− λnAu)‖2

≤ αn‖f(xn)− g(u)‖2 + (1− αn)‖g(un)− λnAun − (g(u)− λnAu)‖2

≤ αn‖f(xn)− g(u)‖2 + (1− αn)[‖g(un)− g(u)‖2 + λn(λn − 2α)‖Aun −Au‖2]

≤ αn‖f(xn)− g(u)‖2 + ‖g(un)− g(u)‖2 + (1− αn)a(b− 2α)‖Aun −Au‖2

≤ αn‖f(xn)− g(u)‖2 + ‖g(xn)− g(u)‖2 + (1− αn)a(b− 2α)‖Aun −Au‖2.

So, we obtain

− (1− αn)a(b− 2α)‖Aun −Au‖2

≤ αn‖f(xn)− g(u)‖2 + (‖g(xn)− g(u)‖+ ‖g(xn+1)− g(u)‖)‖g(xn)− g(xn+1)‖.



AN ITERATIVE METHOD 535

Since αn → 0 and ‖g(xn)− g(xn+1)‖ → 0, then ‖Aun −Au‖ → 0, n→∞.
Further, from (2.1), we obtain

‖yn − g(u)‖2 = ‖PC(g(un)− λnAun)− PC(g(u)− λnAu)‖2

≤ 〈g(un)− λnAun − (g(u)− λnAu), yn − g(u)〉

=
1

2
{‖(g(un)− λnAun)− (g(u)− λnAu)‖2 + ‖yn − g(u)‖2

− ‖g(un)− yn − λn(Aun −Au)‖2}

≤ 1

2
{‖g(un)− g(u)‖2 + ‖yn − g(u)‖2 − ‖g(un)− yn‖2

+ 2λn〈g(un)− yn, Aun −Au〉 − λ2n‖Aun −Au‖2}.

So, we obtain

‖yn − g(u)‖2 ≤ ‖g(un)− g(u)‖2 − ‖g(un)− yn‖2 + 2λn〈g(un)− yn, Aun −Au〉
− λ2n‖Aun −Au‖2.

And hence

‖g(xn+1)− g(u)‖2 ≤ αn‖f(xn)− g(u)||2 + (1− αn)‖Syn − g(u)‖2

≤ αn‖f(xn)− g(u)‖2 + (1− αn)‖yn − g(u)‖2

≤ αn‖f(xn)− g(u)‖2 + ‖g(un)− g(u)‖2 − ‖g(un)− yn‖2

+ 2λn〈g(un)− yn, Aun −Au〉 − λ2n‖Aun −Au‖2

≤ αn‖f(xn)− g(u)‖2 + ‖g(xn)− g(u)‖2 − ‖g(un)− yn‖2

+ 2λn〈g(un)− yn, Aun −Au〉 − λ2n‖Aun −Au‖2.

Since αn → 0, ‖g(xn+1) − g(xn)‖ → 0 and ‖Aun − Au‖ → 0, we obtain
‖g(un)− yn‖ → 0.

Choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈f(q)− g(q), Syn − g(q)〉 = lim
i→∞
〈f(q)− g(q), Syni − g(q)〉

= lim
i→∞
〈f(q)− g(q), g(xni

)− g(q)〉.

As {xni
} is bounded, we have that a subsequence {xnij

} of {xni
} converges

weakly to z. Without loss of generality that xni ⇀ z, by the weakly continuity
of g, we obtain g(xni) ⇀ g(z). Then we can obtain z ∈ Ω. In fact, let us first
show that z ∈ GV I(C,A, g). Let

Tv =

{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal g-monotone. Let (v, w) ∈ G(T ). Since w − Av ∈ NC(v)
and un ∈ C, we have

〈g(v)− g(un), w −Av〉 ≥ 0.
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On the other hand, from yn = PC(g(un) − λnAun), we have 〈g(v) − yn, yn −
(g(un)− λnAun)〉 ≥ 0 and hence

〈g(v)− yn,
yn − g(un)

λn
+Aun〉 ≥ 0.

Therefore, we have

〈g(v)− g(uni
), w〉 ≥ 〈g(v)− g(uni

), Av〉

≥ 〈g(v)− g(uni), Av〉 − 〈g(v)− yni ,
yni
− g(uni

)

λni

+Auni〉

= 〈g(v)− g(uni
), Av〉 − 〈g(v)− yni

,
yni
− g(uni

)

λni

〉 − 〈g(v)− yni
, Auni

〉

= 〈g(v)− g(uni), Av −Auni〉 − 〈g(v)− yni ,
yni − g(uni)

λni

〉 − 〈g(xni)− yni , Auni〉

≥ −〈g(v)− yni
,
yni
− g(uni

)

λni

〉 − 〈g(xni
)− yni

, Auni
〉.

From ‖g(un)− yn‖ → 0 and the weakly continuity of g. Hence we have 〈g(v)−
g(z), w〉 ≥ 0 as i → ∞. Since T is maximal g-monotone, by Lemma 2.2, we
have z ∈ T−10 and hence z ∈ GV I(C,A, g).

‖g(xn)− Sg(xn)‖ ≤ ‖g(xn)− Syn‖+ ‖Syn − Sg(xn)‖
≤ ‖g(xn)− Syn‖+ ‖g(un)− yn‖+ ‖g(un)− g(xn)‖,

We have ‖g(xn)−Sg(xn)‖ → 0, in view of Lemma 2.5, we obtain g(z) ∈ F (S).
So we have

lim sup
n→∞

〈f(q)− g(q), Syn − g(q)〉 = lim
i→∞
〈f(q)− g(q), Syni

− g(q)〉

= 〈f(q)− g(q), g(z)− g(q)〉 ≤ 0.

Since g(un) = Trng(xn), we derive

F (g(un), y) +
1

rn
〈y − g(un), g(un)− g(xn)〉 ≥ 0, ∀ y ∈ C.

From (A2), we have

1

rn
〈y − g(un), g(un)− g(xn)〉 ≥ F (y, g(un))

and hence

〈y − g(uni
),
g(uni)− g(xni)

rni

〉 ≥ F (y, g(uni
))

Since ‖g(un)−g(xn)‖ → 0 and {uni
}⇀ z, from the weak lower semicontinuity

of F and F (x, y) in the second variable y, we have F (y, g(z)) ≤ 0, for all y ∈ C.
For 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we
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have yt ∈ C and hence F (yt, g(z)) ≤ 0. From the convexity of equilibrium
bifunction F (x, y) in the second variable y, we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, g(z)) ≤ tF (yt, y),

and hence F (yt, g(z)) ≥ 0. Then, From (A3), we have Θ(g(z), y) ≥ 0 for all
y ∈ C and hence z ∈ g−1(EP (F )) and z ∈ Ω. We compute that

‖g(xn+1)− g(q)‖2

= ‖αnf(xn) + (1− αn)Syn − g(q)‖2

= α2
n‖f(xn)− g(q)‖2 + 2αn(1− αn)〈f(xn)− g(q), Syn − g(q)〉

+ (1− αn)2‖Syn − g(q)‖2

≤ (1− 2αn + α2
n)‖g(xn)− g(q)‖2 + α2

n‖f(xn)− g(q)‖2 + 2αn(1− αn)

〈f(xn)− f(q), Syn − g(q)〉+ 2αn(1− αn)〈f(q)− g(q), Syn − g(q)〉

≤ [1− 2αn + α2
n + 2

kαn(1− αn)

γ
]‖g(xn)− g(q)‖2 + α2

n‖f(xn)− g(q)‖2

+ 2αn(1− αn)〈f(q)− g(q), Syn − g(q)〉
= (1− ᾱn)‖g(xn)− g(q)‖2 + ᾱnβ̄n,

where

ᾱn = αn[2− αn − 2
k(1− αn)

γ
],

β̄n =
αn‖f(xn)− g(q)‖2 + 2(1− αn)〈f(q)− g(q), Syn − g(q)〉

2− αn − 2k(1−αn)
γ

.

It is easily seen that ᾱn → 0,
∑∞
n=1 ᾱn = ∞, and lim supn→∞ β̄n ≤ 0, by

Lemma 2.6, we obtain g(xn)→ g(q). Therefore ‖xn−q‖ ≤ 1
γ ‖g(xn+1)−g(q)‖ →

0, we obtain xn → q. This completes the proof.
�

Remark 1. Putting g = I, by Theorem 3.1, we can obtain the theorem 3.1 in
[4].
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