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AN ITERATIVE METHOD FOR SOLVING EQUILIBRIUM
PROBLEM FIXED POINT PROBLEM AND GENERALIZED
VARIATIONAL INEQUALITIES PROBLEM

LIJUAN ZHANG AND JUCHUN L1

ABSTRACT. In this paper, we introduce a new iterative scheme for finding
a common element of the set of an equilibrium problem, the set of fixed
points of nonexpansive mapping and the set of solutions of the generalized
variational inequality for a-inverse strongly g-monotone mapping in a
Hilbert space. Under suitable conditions, strong convergence theorems
for approximating a common element of the above three sets are obtained.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H. Recall that a
self-mapping f : C' — C is Lipschitz continuous on C' if there is a constant
k > 0 such that || f(z) — f(¥)]| < kllz —y|,z,y € C; if kK = 1, the mapping is
called nonexpansive. We denoted by F'(f) the set of fixed pints of f.

Let A: C - H, g : C — C two nonlinear operators. We consider a
generalized variational inequality (GVI) problem as follows: to find v € C,
g(u) € C such that

(9(v) — g(u), Au) > 0. (1.1)
The set of solutions of above variational inequality (which is called Noor [1]
variational inequality) problem is denoted by GVI(C, A, g). Such a problem is
connected with the convex minimization problem, the complementarity prob-
lem, the problem of finding a point u € H satisfying 0 = Au and so on. An
operator A of C' into H is said a-inverse-strongly g-monotone if there exists a
positive real number « such that

(g(u) — g(v), Au — Av) > o Au — Av|?

Received November 20, 2010; Accepted November 8, 2011.

2000 Mathematics Subject Classification. 47TH09; 47J20.

Key words and phrases. equilibrium problem, nonexpansive mapping, a-inverse strongly
g-monotone mapping, generalized variational inequalities, fixed point.

This work was financially supported by National Natural Science Foundation of China
(N0.10971045); the Natural Science Foundation of Education Department of Hebei Province
(2010110).

(©2011 The Youngnam Mathematical Society



528 L. J. ZHANG AND J. C. LI

for all u,v € C. It is obvious that A is continuous when ¢ is continuous. The
operator g : C' — C is said to be strongly monotone if and only if there exists
~v > 0 such that
(9(w) = g(v),u —v) 2 3llu— |
for all u,v € C.
By the strong monotonicity of g with constant v > 0, we have

lg(u) = g(o)llllu —vll = (g(u) — g(v),u —v) > v]u— o]
That is,
lg(u) = g(@)|| = vllu—wvl, (1.2)
thus, the above formula implies that ¢! is single-valued operator and

L) —g (v lu—v.
lg~ (u) —g ()IISVII |

When R(g) = C, g is bijective on C, and g~ is Lipschitzian continuous. For
g = I, where I is the identity operator, problem (1.1) is equivalent to finding
u € C, such that
(v —u, Au) > 0,Yv € C,

which is known as the classical variational inequality introduced and studied
by Stampacchia [2] in 1964, the set of solutions of above variational inequality
problem is denoted by VI(C, A).

Let F be a bifunction of C' x C into R, where R is the set of real numbers.
The equilibrium problems for F': C' x C'— R is to find x € C such that

F(z,y) >0, YyeC. (1.3)

The set of solution of (1.1) is denoted by EP(F'). Given a mapping T : C — H,
let F(zx,y) = (Tx,y — x) for all x,y € C. Then, & € EP(F) if and only if
(Ti,y — &) >0 for all y € C, i.e., & is a solution of the variational inequality.
Numerous problems in physics, optimization, and economics reduce to find a
solution of (1.3). Some methods have been proposed to solve the equilibrium
problems.

Very recently, L.Zhang et al [3] introduce an iterative scheme by the general
iterative method: arbitrary initial z¢ € C,

We will prove that if the sequence {a,,} satisfies appropriate conditions, then
the sequence {z, } converges strongly to the unique solution of the variational
inequality

(9(a) = f(9),9(q) — 9(p)) < 0,p € g (F(S)) NGVI(C, A,g).

Y. Su et al [4] introduce an iterative scheme given as follows: x9 € H and

1
Flup,y)+ —{y — up,up —x,) >0, Vyel,
(tUn,y) . (y ) y (13)

Tnt1 = Qnf(xn) + (1 — ap)SPe(un — ApAuy,).
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for all n € N, where {a,} € [0,1] and {r,} C (0,00) satisfy some appropriate
condition. Furthermore, they proved that {x,} and {u,} converge strongly to
z € F(S)NVI(C,A)NEP(F).

In this paper, motivated and inspired by the above results, we introduce an
iterative scheme given as follows: x1 € H and

F(g(un>,y>+%<y—g<un>,g<un>—g(xn»zo, wee

g(xn+1) = anf(xn) + (]- - an)SPC(g(un) - AnAun)

for all n € N, where {«,,} € [0,1] and {r,} C (0, 0) satisfy some appropriate
condition. Furthermore, they proved that {z,,} and {u,} converge strongly to
g€ g~ (F(S))ng " (EP(F))NGVI(C,A,g).

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, and
let C' be a closed convex subset of H. We write x,, — x to indicate that the
sequence {x,} converges weakly to x. x, — x implies that {x,} converges
strongly to x. For every point x € H, there exists a unique nearest point in C,
denoted by Pcx, such that

l& = Pox|| < [lz =yl

for all y € C. P¢ is called the metric projection of H to C. It is well known
that Pg satisfies :

(x —y, Pox — Poy) > | Pox — Pey|)? (2.1)

for every z,y € H, and P¢ is characterized by the following properties:
(x — Pox, Pox —y) > 0, (2.2)
lz = yl* > [lz — Poz|* + ly — Poz||? (2.3)

for all x € H,y € C. In the context of the variational inequality problem, this
implies
ueVI(C A, g) < glu) = Po(g(u) — Mu), VA > 0. (2.4)

We have the following Lemma.

Lemma 2.1. ([3]) Let C be a closed convex subset of a real Hilbert space H,
forallx,y € C and A > 0, if A < 2a. Then the following inequality holds:

1Po(g(z) — Az) — Pa(g(y) — AMy)ll < llg(z) — g(y)ll-

A set-valued mapping T : H — 2% is called monotone if for all z,y € H, f €
Tz and g € Ty imply (z — y, f — g) > 0. A monotone mapping T : H — 2
is maximal if graph G(T) of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping 7' is maximal
if and only if for (x,f) € H x H,{(x —y, f — g) > 0 for every (y,g) € G(T)
implies f € Tx.
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Let g : C — C and ¢ : C — RU {+00}. A vector w € H is called a
g-subgradient of ¢ at = € dome. If {(g(y) — g(z),w) < ¢(y) — ¢(z), for all
y € C. Each ¢ can be associated with the following g-subdifferential mapping
0q4p defined by

5y0z) = {E)U ir;:g@(:u) —g(x),w) < p(y) —p(a), Yy € C}, z €C,

Let No(v) = {w € H : (9(v) — g(u),w) > 0,Yu € C'}. When g = I, No(v) be
the normal cone to C at v € C.

Lemma 2.2. ([3]) Let C be a closed convex subset of a real Hilbert space H,
and A an a-inverse-strongly g-monotone operator of C' into H. Assume that
g : C = C is bijective mapping with R(g) = C. Let T be an operator defined
as follows:

Av+ Ngv, v eC,
Tv =
0, vé¢C.

Then T is mazimal g-monotone and T~10 = GVI(C, A, g).

For solving the equilibrium problem for a bifunction F': C' x C' — R, let us
assume that F' satisfies the following conditions:

(A1) F(z,z) =0 for all z € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C,

(A3) for each z,y,z € C,

13{511“(2?2 + (1 =t)z,y) < F(z,y);

(A4) for each z € C, y — F(z,y) is convex and lower semicontinuous.

Lemma 2.3. ([5]) Let C be a nonempty closed subset of H and F be a bifunc-
tion of C x C into R satisfying (A1)-(A4). Letr >0 and x € H. Then, there
ezists z € C' such that

1
F(zyy)+;<y—z,z—z> >0,vy e C.

Lemma 2.4. ([6]) Assume that F': C x C' — R satisfies (A1)-(A4). Forr >0
and x € H, define a mapping T : H — C' as follows:

1
Tr(m):{zEC:F(z,y)—l—;(y—z,z—x)ZO,VyEC}

for all x € H. Then the following hold:
(1) T is single-valued;
(2) T, is firmly nonexpansive, i.e., for any x,y € H,
IT5-(x) = T ()|1? < (T(2) = Tr(y), = — y);
(3) F(Tr) = EP(f);
(4) EP(f) is closed and conver.
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Lemma 2.5. ([7]) Let C be a closed convex subset of a real Hilbert space H and
let T : C — C be a nonexpansive mapping such that F(T) # 0. If a sequence
{zp} in C is such that z, — z and x,, — Tx, — 0, then z = Tz.

Lemma 2.6. ([8]) Let {s,} be a sequence of nonnegative real numbers such
that:

Sn+1 S (1 - )\n)sn + Brmn Z Ou
where { A, },{Bn} satisfy the conditions:

(Z) {An} C (Oa 1) and Ezozl An = 00,
(i1) limsup,, ., f—: <0 or > 2, |Bn] <oo. Then lim, o0 s, = 0.

3. Main result

Theorem 3.1. Let C be a nonempty closed convexr subset of a real Hilbert
space H. Let F be a bifunction from C x C to R satisfying (A1)-(A4), Let
f:C — C is Lipschitz continuous with coefficient k (0 < k), and g : C — C
is strongly monotone and weakly continuous with coefficient v (k < 7) and
R(g) = C, and A an a-inverse-strongly g-monotone mapping of C' into H and
let S be a nonexpansive mapping of C into itself such that Q = g~ 1(F(S)) N
g HEP(F)NGVI(C, A, g) # 0. Suppose {x,} be sequences generated by (1.4)
for every n = 0,1,2,..., where {\,} C [a,b] and {a,} is sequence in (0,1). If
{an} and {\,} are chosen so that A\, € [a,b] for some a,b with 0 < a < b < 2,
liminf, ,oom, > 0 lmy oo, = 0, D00 = 00, Y00 |nt1 — ay| <
00, Yoot 1A = Ang1] < 00,300 | — Taaa| < oo. Then {x,} defined in
(1.4) converges strongly to q € Q, which is the unique solution in the Q to the
following variational inequality

(f(q) —9(q),9(p) —9(q)) <0, VpeQ.

Proof. Put y, = Po(g(un) — M\Auy,) for every n = 0,1,2,.... Let u € Q. By
(2.4) and Lemma 2.1, we have

lyn — 9| = | Pc(g(un) — AnAun) — Po(g(u) — A Au)|
< [(g(un) = AnAun) = (g(u) — Ay Au)||
< lg(un) — g(w)]l-

From g(u,) = T, g(z,), we have
l9(un = g()|| = ITr, 9(2n) = Tr,g(uw)]| < llg(zn) = g(u)]|
for every n > 1. Then we compute that

lg(zns1) = g(W)]| = llanf(@n) + (1 = ) Syn — g(u)]|
< ol f(zn) = g(u)] + (1 = an)[1Syn — g(u)|
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< an|[f(zn) = (W)l + anll f(uw) = g(@)| + (1 = an)]yn = g(u)]]
< ankllzn —ull + (1 = an)llg(zn) — g(W)|| + anl| f(u) = g(u)]]

< a%k\\g(fvn) =gl + (1 = an)llg(ezn) = g(w)[| + anl[f(v) = g(u)]|

=(1-01- S)O‘n)”g(l'n) —g(u)|l + anllf(u) — g(u)|

< max{lg(an) — g0}, g 1) — g}
By induction, !
l9(xn) — g(uw)]| < max{lg(zo) — g(w)l, ﬁllf(u) -9}, n=0.

Therefore, {g(x,)} is bounded. By (1.2), we have {z,} is bounded. From the
property of g, A, S, f, we have {y,},{Syn}, {Az,}, {f(x,)} are also bounded.
By (2.4), we have
[Yn+1 = Ynll < [lg(tnt1) = Ang1Atngr — (9(un) — AnAus)||
< Ng(unt1) = Ans1Aungr = (9(un) — Ang1Au)||
+ [An = A1 ||| A |
< Nlg(un+1) = g(un)ll + [An = Ansa ||| Aun||
for every n =0,1,2,.... So we obtain
19(xn11) — g(@n) |l
= [lanf(zn) + (1 — an)Syn — an—1f(¥n-1) — (1 — 1) Syn—1]|
= [[(an — an—1)(f(zn-1) = Syn-1) + (1 — ) (Syn — Syn—1)
+ an(f(zn) = f(@n-1))ll
< lon = an-a|lf(@n-1) = Syn-1ll + (1 = an)llyn — yn-1ll
+ ankl|zn — 2n-1]]
< (1= an)(llg(un) = gun—1)ll + [An—1 = Al Atin-1]))

k
+lan — a1l f(Tn—1) = Syn—1| + O‘n;Hg(xn) —g(@n_1)|l

k
< ;Oénllg(ﬂ?n) = g@n-1)[| + (1 = an)llg(un) — g(tn-1)|
+ (|)‘n - /\n—ll + Jon — an—1|)M
for every n = 10,1, 2, ..., where
M = max{sup{||Aun|| : n € N}, sup{[|f(zn)| + [|S(yn)|| : n € N}}.

On the other hand, from g(u,) = T, g(zy) and g(uny1) = T, 9(Tn41), We

have
F@wmm+%@—mwmwm—m%»zo (3.1)
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for all y € C, and
1

Tn+1

Fg(unt1),y) + (Y — 9(unt1), 9(uny1) — g(zns1)) 20 (3.2)

for all y € C. Putting y = g(un+1) in (3.1) and y = g(uy,,) in (3.2), we have

Fg(un), g(uns1)) + %<g(un+1) = 9(un), g(un) = g(zn)) > 0

and
1

Tn+1

F(g(un+1), 9(un)) + (9(un) = g(un+1), 9(tnt1) — g(Tnt1)) = 0.

So, from (A2) we have

g(un) — g(xn) . g(unJrl) — g(xn+l)>

(9(unt1) — g(un), >0
Tn Tn+1
and hence
(9(unt1)=9(un), g(tun)—g(tny1)+9g(Ung1) _g(xn)—T:il (9(unt1)=9(zns1))) >0.

Without loss of generality, let us assume there exist a real number m such that
rn > m > 0 for all n € N. Then, we have

lg(n+1) = g(un)|®

T'n
< {9(un+1) = g(un), 9(@n41) = g(an) + (1 = » )(9(uns1) = g(@n41)))-
Observe that, we have
Tn

lgCun+1) = glun)ll < llg(zns1) = glaa)ll + (1 = ——=)llg(unt1) = g(@nt1)l

n+1
1
< Ng@ns1) = glan) |+ —lrw = raa|E

where L = sup{||g(u,) — g(zn)]| : n € N}. So we have
lg(@ns1) = glan)ll < (1 - (1 - %)an)llg(%) = g(@n-)ll + ([An = Anal

L
+lan — no1 )M 4+ —=|ry — oyl
m

Since Y07 1 [An = Mga| <00, Y07 ey —ap_1] < oo and Yo7 | — Ty <
00, in view of Lemma 2.6, we have lim, o [|g(Zn+1) — g(zn)|| = 0. Then we
also obtain lim, s ||g(tns1) — g(uy)|] = 0 and ||yn+1 — ynl| — 0. From the
definition of g(x,,), we have

l9(zn) = Synll < ll9(xn) = Syn—1ll + [[Syn—1 — Syull
< anfl‘lf(xnfl) - Syn—1|| + ”ynfl - yﬂ”?
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we have ||g(z,) — Syn| — 0. For u € Q, we have
lg(un) = g(W)||> = | Trag(z) — Trog(u)|?
< <Trng(xn) - Trng(u)vg(xn) - g(u>>
< (g(un) = g(u), g(xn) — g(u))
= %(llg(un) — g + llg(zn) — g(@)|* — llg(zn) — glun)l*)
and hence
lg(un) = g()|* < llg(an) — g(u)|* = llg(zn) — g(un)|*.
Therefore, from the convexity of |.||
lg(zn+1) — g(w)|®
= [Janf(zn) + (1 — an)Syn — g(u)||2
< | f(an) = ()| + (1 = an)llyn — g(u)|®
< ol f(zn) = g(@)|I* + (1 = an)lg(un) — g(u)|®
(2n) —
(zn) —

()
< anllf(zn) = gW)|* + (1 = an)(lg(zn) = g(w)|> = [lg(zn) — g(un)|*)
< anllf(xn) = g + llg(zn) = g(@)]|* = (1 = an)llg(zn) — g(un)|,
and hence

= (1= an)llg(zn) = glun)|?
< anlf(zn) = g()I” + (lg(@n) — 9@l + g(zns1) — 9@ IDllg(zn) = g(@nsa)ll-

So we have
lg(zn) = g(un)ll = 0, lzn — unll = 0.
Next we show ||y, — g(un)|| — 0, for u € Q, we compute that

l9(zns1) — g(u)|?
= [lanf(@n) + (1 — @) Syn — g(u)||?
< an||f(zn) = g(w)|? + (1 = an)lyn — g(u)|?
= anllf(2n) — g(w)|* + (1 = an) | Pe(g(un) — AnAun) — Po(g(u) — A Au)||?
< an |l f(@n) — g(u)|? + (1 = an)llg(un) — AnAu, — (g(u) — A Au)|?
< apllf(zn) — g(W)* + (1 = an)llg(un) — g(W)|* + An(An — 20) || Auy, — Aul?]
< an||f(2n) = g(W)|? + llg(un) — g(@)|* + (1 — an)a(b — 20) || Auy, — Aul?
(u)

< ap|[f(2n) = gW)|? + [lg(zn) = g(@)|* + (1 = an)a(b — 20) | Au, — Aul®.

So, we obtain

— (1 = apn)a(b — 20)| Au,, — Aul?

< apllf(xn) = g + (lg(an) = g(@)|| + llg(@ns1) — g(@)Dlg(xn) = g(@ns1)ll.
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Since «,, — 0 and ||g(z,) — g(znt1)|| = 0, then | Au, — Aul| — 0,n — oc.
Further, from (2.1), we obtain

1y = g(W)II* = | Pe(g(un) — AnAun) — Po(g(u) — ApAu)||?

< {g(tn) — A Aty — (g(u) — Ay Au), y, — g(u))

1

= 5{l(g(un) = AnAun) = (g(w) = AnAw)[* + [lyn — g(w)[|*

— llg(un) = yn — An(Auy — Au)|}
< %{llg(un) = 9@ + llyn = 9@)II* = llg(un) = yal?
+ 20, (9(Un) — Yn, Auy, — Au) — N2 || Au,, — Aul|?}.
So, we obtain
lyn = g(@)[I* < llg(un) = g(@)II* = llg(un) = ynll* + 2Xn(g(un) = yn, Auy — Au)
— A2 || Au,, — Aul?.
And hence
) = 9[> + (1 = an)[[Syn — g(w)|I?
< anl| f(zn) = g(@)|* + (1 = an)llyn — 9(u)|®
< anl|f(2n) = g(@)|* + lg(un) = g(@)II* = llg(un) = ynll*
+ 20 (9 () — Yn, Aty — Au) — N2 || Au,, — Aul)?
< anl|f(2n) = g(@)|* + llg(zn) = g(@)II* = llg(un) = ynll?
+ 200 (g(Un) — Yn, Aup, — Au) — N2 || Au, — Aul?.
(wn)

Since a,, — 0, |lg(zpns1) — g

lg(un) = ynl — 0.
Choose a subsequence {x,,} of {x,} such that

limsup{f(q) ~ 9(a). Sy ~ 9(a)) = Jim (F(a) = 9(a). Sy, ~ 9(0))
= lim (f(q) = 9(q), 9(xn.) — 9(2))-

As {z,,} is bounded, we have that a subsequence {z,,,} of {z,,} converges
weakly to z. Without loss of generality that x,, — z, by the weakly continuity
of g, we obtain g(z,,) — g(z). Then we can obtain z € . In fact, let us first
show that z € GVI(C, A, g). Let

Av+ Nev, v e C,
Tv =
0, vé¢cC.

Then T is maximal g-monotone. Let (v,w) € G(T). Since w — Av € N¢(v)
and u, € C, we have

lg(znt1) — g(u)||2 < anlf(zn

u
u

n

| — 0 and ||Au, — Au|| — 0, we obtain

(9(v) = g(un), w — Av) > 0.
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On the other hand, from v, = Po(g(un) — AnAuy,), we have (g(v) — yn, yn —
(9(un) — ApAuy,)) > 0 and hence

Yn — 9(un)

N, + Au,) > 0.

(9(v) = yn,
Therefore, we have
(9(v) = g(un,), w) = (g(v) — g(un,), Av)

> (g(0) = glun,), Av) — (g(v) — yn,, L = 9Lns)

= <g(v) - g(uni)7Av> - <g(’U) — Yn;» ym_}\ii(urh)> - <g(v) - ynlaAunJ

Yn; — g(uni)>

)\ni - <g($7h) — Yn;> Aunl>

= {gl0) ~ o(un,), Av — Aw) — {g(0) ~ pr,
> ~g(0) — s I ) = g A

From ||g(un) — yn|| = 0 and the weakly continuity of g. Hence we have (g(v) —
g(z),w) > 0 as i — co. Since T is maximal g-monotone, by Lemma 2.2, we
have z € T710 and hence z € GVI(C, A, g).

l9(xn) = Sg(zn)ll < llg(zn) = Synll + [1Syn — Sg(@n)||
< lg(@n) = Synll + llg(un) = ynll + [lg(un) — g(zn)ll,
We have ||g(z,) — Sg(z,)|| = 0, in view of Lemma 2.5, we obtain ¢g(z) € F(S).

So we have

limsup(f(q) — 9(q), Syn — 9(q)) = lim (f(q) — 9(q), Syn, — 9(q))

= (f(a) —9(a), 9(2) — g9(@)) <0.
Since g(u,) = Ty, g(xy,), we derive

1

F(g(un),y) + E@ = g(un), g(un) — g(x,)) >0, VyeC.

From (A2), we have

o = 9(ua), gl) = gl)) = F(0:9(un)
and hence
(y — g(un,), w) > F(y,9(un,))

Tn.,

Since [|g(un) — g(x,)|| — 0 and {u,,} — 2, from the weak lower semicontinuity
of F and F(x,y) in the second variable y, we have F(y, g(z)) <0, forally € C.
ForO<t<landyeC,lety =ty+ (1 —t)z. Sincey € C and z € C, we
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have y; € C and hence F(y;,g(z)) < 0. From the convexity of equilibrium
bifunction F(z,y) in the second variable y, we have

0= F(yt,y:) < tF(ye,y) + (L =) F(ys,9(2)) < tF(ye, y),

and hence F(y:,9(z)) > 0. Then, From (A3), we have O(g(z),y) > 0 for all
y € C and hence z € g~ (EP(F)) and z € Q. We compute that

lg(zni1) — g(@)[”

= [lanf(2a) + (1 = @) Syn — 9(0)|?

= a3 || f(2n) = 9(@I° + 20 (1 — o) (f(x0) — 9(q), Syn — 9(q))
+ (1= )?||Syn — 9(9)|?
< (1 =20, + a)llg(an) — g(@I° + @bl f(2n) — g(@)I* + 20 (1 — )
(f(zn) = f(@): Syn — 9(a)) + 200, (1 — an){f(q) — 9(a), Syn — 9(q))

M]Hg(%) — g(q)]I* + a2 f(zn) — g(q)|?

+ 20, (1 — an)(f(q) — 9(q), Syn — 9(q))
= (1= an)llg(zn) — 9(@)||* + cnfn,

where

<[1-2a,+al+2

k(1 — ay)
#]7
s _ onllf(zn) = 9(@)|I* + 2(1 = an)(f(9) = 9(a), Syn — 9())

Bn
2~ ay, — 27’““;“")

Ay = a2 — ay — 2

It is easily seen that a, — 0,>. @, = oo, and limsup,_, B <

Lemma 2.6, we obtain g(x,,) — ¢(q). Therefore ||mn ql| < —||g(mn+1 g(q
0, we obtain x,, — ¢. This completes the proof.

0, by
) —
0

Remark 1. Putting g = I, by Theorem 3.1, we can obtain the theorem 3.1 in
[4].
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