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ON THE CONVERGENCE OF AN OPTIMIZATION

ALGORITHM BASED ON NONLINEAR OPERATORS

Sun Young Cho

Abstract. In this paper, an equilibrium problems involving a finite fam-

ily of maximal monotone operators and inverse-strongly monotone oper-

ators are introduced and investigated. A strong convergence theorem of
common solutions is obtained in Hilbert spaces.

1. Introduction

In this paper, H is assumed to be a real Hilbert space with ‖·‖ and 〈·, ·〉 and C
is assumed to a convex and closed nonempty set in H. For all x ∈ H, there exists
a unique vector in C, denoted by PCx, such that ‖x−PCx‖ = miny∈C ‖x− y‖.
PC is called the metric or nearest point projection from H onto C. We have
the following two essential properties of the prjection 〈PCx − PCy, x − y〉 ≥
‖PCx − PCy‖2, ∀x ∈ H, y ∈ H and ‖x − PCx‖2 + ‖y − PCx‖2 ≤ ‖x − y‖2,
∀x ∈ H, y ∈ C.

Let B : C × C → R be a bifunction. Consider the following generalized
variational inequality, which was first introduced by Fan [6]

Find y∗ ∈ C such that B(y∗, y) ≥ 0, ∀y ∈ C. (1)

The above problem is called the equilibrium in the sense of Blum and Oettli [1].
From now on, one always calls (1) an equilibrium problem. The set of all solu-
tions to problem (1) is presented by Sol(B), i.e., Sol(B) := {y∗ ∈ C : B(y∗, y) ≥
0,∀y ∈ C}. Problem (1) is quite general. Indeed, it includes a number of math-
ematical problems as special cases, such as, variational inequality problems,
saddle-point problems, minimization problems, complementarity problem, etc;
see, e.g., [3, 8, 9, 10, 11]. In addition to the theoretical importance, it also
provides a general and unified framework of a number of real-world practice
problems, such as, signal processing, medical imaging, traffic and transporta-
tion etc. From the viewpoint of numerical analysis, variational solution methods
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have been suggested and investigated for solving problem (1). For established
and recent results, one refers to [12, 17, 18, 21, 22] and the references therein.

Next, we introduce the other problem, the zero-point problem. Find a zero
point of the sum of monotone operators. In this paper, we will consider the
case of two operators, that is,

0 ∈ (A+B)(x), (2)

where A and B are two maximal monotone operators (see below). It is known
that a stationary solution to the initial value problem of the evolution equation{

0 ∈ Fu+ ∂u
∂t ,

u0 = u(0),

could be recast as (2) if the operator F can be rewritten as F = A + B.
This problem, which can be viewed as a significant mathematical modelling
in medical imaging, has extensively studied via resolvent techniques; see, e.g.,
[2, 4, 5, 19] and the references therein.

Many problems can be formulated as a problem of the form (2). Splitting
methods, including, the Douglas-Rachford splitting method, the Peaceman-
Rachford splitting method and the forward-backward splitting method, are pop-
ular and have been employed to approximating zero points of the sum of two or
more monotone operators; see, e.g., [5, 19, 21, 24] and the references therein.

In this paper, we consider the following convex feasibility problem, which
consists of finding a solution to a bifunction equilibrium problem and the zero
problem involving two finite families of maximal monotone operators

Sol(B) ∩
(
∩Nm=1 (Am +Bm)−1(0)

)
, (3)

where B is an equilibrium problem, N is positive integer, and Am, Bm are two
maximal monotone operators. We consider a projection algorithm [20] for the
above problem and establish a strong convergence theorem, that is, convergence
in norm, in the framework of real Hilbert spaces without compact conditions on
operators and any subset of H, and without the aid of contractive conditions.
The main results presented in this paper extend some recently results in the
literatures in this field.

We organize this paper as follows: Section 2 is devoted to necessary tools,
properties, definitions, and lemmas. The strong convergence theorem is studied
and obtained in Section 3. Some subresults on classical variational inequalities
are presented in the last section, Section 4.

2. Preliminaries

Let A : C → H be a single-valued mapping. One recalls that A is said to be
monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.
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A is said to be ν-inverse-strongly monotone if there exists a constant ν > 0 such
that

〈Ax−Ay, x− y〉 ≥ ν‖Ax−Ay‖2, ∀x, y ∈ C.
The classical monotone variational inequality is to find an x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C.

It is known fixed-point methods are efficient to solve the above monotone vari-
ational inequality. The solution set of the variational inequality problem is
denoted by V I(C,A). The variational inequality is an efficient tool for dealing
with a number of real-world problems and it has been extensively studied via
fixed-point methods; see, e.g., [7, 12, 14, 23, 24] and the references therein.

Let B : H → 2H be set-valued mapping with domain Dom(B) = {x ∈ H :
Bx 6= ∅} and range Ran(B) = {Bx : x ∈ Dom(B)}. One recalls that B is
monotone if, for all x1, x2 ∈ Dom(B), y1 ∈ Bx1 and y2 ∈ Bx2, 〈x1 − x2, y1 −
y2〉 ≥ 0. Let Graph(B) = {(x, y) : y ∈ Bx} be the graph of B. Mapping B
is said to be maximal if Graph(B) is not contained in the graph of any other
monotone mapping properly.

Let S be a mapping on H. S is said to be firmly nonexpansive if ‖Sx−Sy‖2 ≤
〈x − y, Sx − Sy〉, ∀x, y ∈ C. It is known that the metric projection is firmly
nonexpansive. S is said to be nonexpansive iff ‖Sx−Sy‖ ≤ ‖x−y‖, ∀x, y ∈ C. It
is known that if C is bounded, then the set of fixed points of every nonexpansive
mapping is nonempty. In addition, the set of fixed points is convex and closed.
Let I denote the identity mapping onH. One can define a single-valued mapping
ResBµ : H → H by ResBµ = (I+µB)−1 for any µ > 0. ResBµ : H → H is call the

resolvent of B. ResBµ is firmly nonexpansive and B−10 = Fix(ResBµ ), where

Fix(ResBµ ) denotes the fixed-point set of ResBµ .
To study equilibrium problem (1), one assumes that B satisfies the following

restrictions:
(R1) B(x, x) = 0, for all x ∈ C;
(R2) B(x, y) +B(y, x) ≤ 0, for all x, y ∈ C;
(R3) lim supt↓0B(tz + (1− t)x, y) ≤ B(x, y), for each x, y, z ∈ C;
(R4) y 7→ B(x, y) is convex and weakly lower semi-continuous for each x ∈ C.

Lemma 2.1. [1] Let B : C × C → R be a bifunction satisfying (R1)-(R4).
Then, for any η > 0 and x ∈ H, there exists z ∈ C such that

〈y − z, z − x〉+ ηB(z, y) ≥ 0, ∀y ∈ C.

Further, define

ResBη x :=
{
z ∈ C : 〈y − z, z − x〉+ ηB(z, y) ≥ 0, ∀y ∈ C

}
for any η > 0 and x ∈ H. Then, the following assertions hold:

(a) ResBη is single-valued;

(b) ResBη is firmly nonexpansive;
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(c) Fix(ResBη ) = Sol(B) is convex and closed, where Fix(ResBη ) denotes the

set of fixed points of mapping ResBη .

Lemma 2.2. [13] Let A : C → H be a single-valued monotone mapping, and
B : H → H a maximal set-valued monotone operator. Then Fix(ResBµ (I −
µA)) = (A+B)−1(0), which is convex and closed.

3. Main results

Theorem 3.1. Let C be a closed and convex nonempty subset of a real Hilbert
space and let N be some positive integer. Let B be a bifunction with restrictions
(R1)-(R4). Let Bm : C → H be a maximal monotone mapping and let Am :
C → H be a νm-inverse-strongly monotone mapping for all 1 ≤ m ≤ N. Assume
that Φ :=

(
∩Nm=1 (Am +Bm)−1(0)

)
∩Sol(B) 6= ∅ and {xn} is a vector sequence

defined by

x1 ∈ H,
C1 = H,

〈λ− yn, yn − xn〉+ ηnB(yn, λ) ≥ 0, ∀λ ∈ Cn,
zn = αn

∑N
m=1 ϕn,mRes

Bm
µn,m

(I − µn,mAm)yn + (1− αn)xn,

Cn+1 = {w ∈ Cn : ‖xn − w‖ ≥ ‖zn − w‖},
xn+1 = PCn+1

x1, n ≥ 0,

where the control sequences {αn}, {ηn}, {µn,m} and {ϕn,m} satisfy the following
restrictions: αn ∈ [a, 1) with a ∈ R being some constant, {ηn} is a real position
sequence such that lim infn→∞ ηn > 0, 0 < d ≤ µn,m ≤ e < 2νm. Then the
sequence {xn} generated above converges to PΦx1 in norm.

Proof. From Lemma 2.1, one has that Sol(B) is convex and closed. From
Lemma 2.2, one has that (Am + Bm)−1(0)) is convex and closed for each 1 ≤
m ≤ N . Hence, one concludes that Φ is a convex and closed set so that the
projection is well-defined.

Next, one shows that each Cn is convex and closed. From the construction of
Cn, one easily sees that each Cn is closed. For the convexity, one observes that
C1 = H is convex. One supposes that for some positive integer i, Ci is convex.
One next only needs to Ci+1 is convex. Indeed, ‖xn−w‖ ≤ ‖zn−w‖ is equivalent
to 2〈zn−xn, w〉 ≤ ‖zn‖2−‖xn‖2. Letting w1 and w2 be two vectors in Ci+1, one
next shows that w̄ = (1−t)w1+tw2, where t is a real in (0, 1), is in Ci+1. In view
of the construction of Ci+1, one has w1 ∈ Ci, w2 ∈ Ci, ‖xn −w1‖ ≤ ‖zn −w1‖,
and ‖xn − w2‖ ≤ ‖zn − w2‖, that is, 2〈zn − xn, w1〉 ≤ ‖zn‖2 − ‖xn‖2 and
2〈zn − xn, w2〉 ≤ ‖zn‖2 − ‖xn‖2. It follows that 2〈zn − xn, w̄〉 ≤ ‖zn‖2 − ‖xn‖2,
which implies that w̄ ∈ Ci+1. This proves the convexity of Ci+1. Therefore, Cn
is convex and closed so that the nearest projection on it is well-defined.

One next shows that the solution set lies in Cn. It is clear Φ ⊂ C1 = H. Let
Φ ⊂ Ci. Next, for the same i, one shows that Φ ⊂ Ci+1. For each p ∈ Φ ⊂ Ci,
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one sees from Lemma 2.1 that

‖yi − p‖ = ‖ResBηixi −Res
B
ηip‖ ≤ ‖xi − p‖.

Since each Am is a νm-inverse-strongly monotone, one sees that I − µn,mAm is
nonexpansive. Indeed,

‖(I − µn,mAm)x− (I − µn,mAm)y‖2

= ‖x− y‖2 + µ2
n,m‖Amx−Amy‖2 − 2µn,m〈x− y,Amx−Amy〉

≤ ‖x− y‖2 − µn,m(2νm − µn,m)‖Amx−Amy‖2

≤ ‖x− y‖2, ∀x, y ∈ C,

that is, I − µn,mAm is nonexpansive. Setting en :=
∑N
m=1 ϕn,mtn,m, where

tn,m = ResBm
µn,m

(I − µn,mAm)yn,

one has

‖ei − p‖ = ‖
N∑
m=1

ϕi,mRes
Bm
µi,m

(I − µi,mAm)yi −
N∑
m=1

ϕi,mRes
Bm
µi,m

(I − µi,mAm)p‖

≤
N∑
m=1

ϕi,m‖ResBm
µi,m

(I − µi,mAm)yi −ResBm
µi,m

(I − µi,mAm)p‖

≤ ‖xi − p‖.

This implies

‖xi − p‖ ≥ αi‖ei − p‖+ (1− αi)‖xi − p‖ ≥ ‖zi − p‖.
This indicates that Φ ⊂ Cn. From the construction of {xn}, one sees xn =
PCnx1. In view of Φ ⊂ Cn, one concludes that ‖x1 − xn‖ ≤ ‖x1 − p‖, ∀p ∈ Φ.
Fixing a special vector in Φ, one obtains that

‖x1 − xn‖ ≤ ‖x1 − PΦx1‖.
This clearly shows that {xn} is a bounded vector sequence.

Since the framework of space is Hilbert, one concludes that there exists a
subsequence of sequence {xn}, {xnj

}, which converges to x∗ weakly. Observe
that

‖xn − xn+1‖2

= 2〈xn+1 + xn − xn − x1, x1 − xn〉+ ‖xn+1 − x1‖2 + ‖xn − x1‖2

= 2〈xn+1 − xn, x1 − xn〉+ ‖xn+1 − x1‖2 − ‖xn − x1‖2

≤ ‖xn+1 − x1‖2 − ‖xn − x1‖2

due to xn+1 ∈ Cn and xn = PCn
x1. In view of this, one has limn→∞ ‖xn −

xn+1‖2 = 0 since limn→∞ ‖xn − x1‖2 exists. Thanks to xn+1 ∈ Cn+1, one
obtains

‖xn − xn+1‖ ≥ ‖zn − xn+1‖,
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which yields that limn→∞ ‖zn−xn+1‖ = 0. This further shows that limn→∞ ‖zn−
xn‖ = 0. Fixing p ∈ Φ, one gets from Lemma 2.1 that

2‖yn − p‖2 = 2‖ResBηnxn −Res
B
ηnp‖

2

≤ 2〈xn − p, yn − p〉
= ‖xn − p‖2 − ‖yn − xn‖2 + ‖yn − p‖2,

which indicates ‖yn − p‖2 ≤ ‖xn − p‖2 − ‖yn − xn‖2. Observe that

‖zn − p‖2 ≤ αn‖en − p‖2 + (1− αn)‖xn − p‖2

≤ αn
N∑
m=1

ϕn,m‖tn,m − p‖2 + (1− αn)‖xn − p‖2

≤ αn‖yn − p‖2 + (1− αn)‖xn − p‖2

≤ ‖xn − p‖2 − αn‖yn − xn‖2.

It follows that

αn‖yn − xn‖2 ≤M‖xn − zn‖,
where M ≥ max{‖xn − p‖ + ‖zn − p‖} is some real constant. This indicates
that limn→∞ ‖yn − xn‖ = 0. Observe that

‖(I − µn,mAm)yn − (I − µn,mAm)p‖2

= µ2
n,m‖Amyn −Amp‖2 − 2µn,m〈yn − p,Amyn −Amp〉+ ‖yn − p‖2

≤ ‖yn − p‖2 − (2νm − µn,m)µn,m‖Amyn −Amp‖2

≤ ‖xn − p‖2 − (2νm − µn,m)µn,m‖Amyn −Amp‖2, ∀1 ≤ m ≤ N.

It follows that

‖zn − p‖2

≤ αn‖en − p‖2 + (1− αn)‖xn − p‖2

≤ αn
N∑
m=1

ϕn,m‖tn,m − p‖2 + (1− αn)‖xn − p‖2

≤ αn
N∑
m=1

ϕn,m‖(I − µn,mAm)yn − (I − µn,mAm)p‖2 + (1− αn)‖xn − p‖2

≤ ‖xn − p‖2 − αn
N∑
m=1

ϕn,m(2νm − µn,m)µn,m‖Amyn −Amp‖2.

Thus

αn

N∑
m=1

ϕn,m(2νm − µn,m)µn,m‖Amyn −Amp‖2 ≤ ‖xn − p‖2 − ‖zn − p‖2.
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From the restriction on {µn,m}, one arrives at

lim
n→∞

‖Amyn −Amp‖ = 0, ∀1 ≤ m ≤ N.

Observe that

2‖tn,m − p‖2

≤ 2〈(I − µn,mAm)yn − (I − µn,mAm)p, tn,m − p〉
= ‖(I − µn,mAm)yn − (I − µn,mAm)p‖2 + ‖tn,m − p‖2

− ‖(tn,m − p)− (I − µn,mAm)yn + (I − µn,mAm)p‖2

≤ ‖yn − p‖2 + ‖tn,m − p‖2 − ‖tn,m + µn,m(Amyn −Amp)− yn‖2

≤ ‖yn − p‖2 + ‖tn,m − p‖2 − ‖tn,m − yn‖2 − µ2
n,m‖Amyn −Amp‖2

+ 2µn,m‖tn,m − yn‖‖Amyn −Amp‖
≤ ‖yn − p‖2 + ‖tn,m − p‖2 − ‖tn,m − yn‖2 + 2µn,m‖tn,m − yn‖‖Amyn −Amp‖.

Hence,

‖tn,m − p‖2 ≤ ‖yn − p‖2 − ‖tn,m − yn‖2 + 2µn,m‖tn,m − yn‖‖Amyn −Amp‖.

It follows that

‖zn − p‖2 ≤ αn‖en − p‖2 + (1− αn)‖xn − p‖2

≤ αn
N∑
m=1

ϕn,m‖tn,m − p‖2 + (1− αn)‖xn − p‖2

≤ ‖xn − p‖2 − αn
N∑
m=1

ϕn,m‖tn,m − yn‖2

+ 2αn

N∑
m=1

ϕn,mµn,m‖tn,m − yn‖‖Amyn −Amp‖

This yields that limn→∞ ‖tn,m−yn‖ = 0, ∀1 ≤ m ≤ N and limn→∞ ‖en−yn‖ =
0. Observe that

〈λ− yn, yn − xn〉+ ηnB(yn, λ) ≥ 0, ∀λ ∈ Cn.

By use of restriction (R2), one sees that

〈λ− yn, yn − xn〉 ≥ ηnB(λ, yn), ∀λ ∈ Cn.

By replacing n by nj , one concludes from restriction (R4) that B(λ, x∗) ≤ 0,
∀λ ∈ Cnj

. Observe that cλ+(1−c)x∗ ∈ Cnj
, where c is a real constant in (0, 1).

So,

B(cλ+ (1− c)x∗, x∗) ≤ 0.
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This further concludes that

0 = B(cλ+ (1− c)x∗, cλ+ (1− c)x∗)
≤ cB(cλ+ (1− c)x∗, λ) + (1− c)B(cλ+ (1− c)x∗, x∗)
≤ cB(cλ+ (1− c)x∗, λ),

that is, B(cλ+ (1− c)x∗, λ) ≥ 0, ∀λ ∈ Cnj
. Letting c ↓ 0 and using restriction

(R3), one asserts that B(x∗, λ) ≥ 0, ∀λ ∈ Cnj
. This yields that x∗ ∈ Sol(B).

Now, one is in a position to show that x∗ ∈ (Am + Bm)−1(0). Since tn,m =
(I + µn,mBm)−1(I − µn,mAm)yn, one finds that

yn − tn,m
µn,m

−Amyn ∈ Bmtn,m.

Note that Bm is monotone for each m. For any (ψm, ωm) ∈ Graph(Bm), one
asserts that

〈tn,m − ψm,
yn − tn,m
µn,m

−Amyn − ωm〉 ≥ 0.

Since both {ynj
} and {tnj ,m} converge to x∗ weakly, one has

〈x∗ − ψm,−Amx∗ − ωm〉 ≥ 0.

This indicates −Amx∗ ∈ Bmx∗, that is,

x∗ ∈ (Am +Bm)−1(0).

Finally, one proves that {xn} converges strongly to PΦx1. Observe that

‖x1 − PΦx1‖ ≤ ‖x1 − x∗‖ ≤ lim inf
j→∞

‖x1 − xnj‖ ≤ lim sup
j→∞

‖x1 − xnj‖ ≤ ‖x1 − PΦx1‖,

which yields that

lim
j→∞

‖x1 − xnj‖ = ‖x1 − x∗‖ = ‖x1 − PΦx1‖.

In view of the fact that H is a Hilbert space, one concludes that {xnj
} converges

to PΦx1 in norm. Therefore, {xn} converges to PΦx1 in norm. The proof is
completed. �

Let f : H → (−∞,+∞] be a proper, lower semicontinuous, and convex
function. Let ∂f be the subdifferential of function f , which is defined by

∂f(x) = {y ∈ H : f(z)− f(x) ≥ 〈z − x, y〉, z ∈ H}, ∀x ∈ H.

Rockafellar [15, 16] proved that the subdifferential ∂f is a maximal monotone
mapping and 0 ∈ ∂f(x) iff f(x) = miny∈H f(y). Define the indicator function
IC of set C by

IC(x) =

{
0, x ∈ C,
+∞, x /∈ C.

Since IC is proper, lower semicontinuous and convex on H, one finds that the
subdifferential ∂IC of IC is set-valued maximal monotone. For the maximal
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monotone mapping, one can define its resolvent mapping ResICµ , i.e., ResICµ :=

(I + µ∂IC)−1. Letting x = ResICµ y, we find that

y ∈ x+ µ∂ICx⇐⇒ y ∈ x+ µNCx

⇐⇒ 〈y − x, z − x〉 ≤ 0,∀z ∈ C
⇐⇒ x = PCy,

where
NCx := {e ∈ H : 〈e, z − x〉,∀z ∈ C}.

From Theorem 3.1, one has the following result on the variational inequality
and the equilibrium problem.

Corollary 3.2. Let C be a closed and convex nonempty subset of a real Hilbert
space and let N be some positive integer. Let B be a bifunction with restrictions
(R1)-(R4). Let Bm : C → H be a maximal monotone mapping and let Am :
C → H be a νm-inverse-strongly monotone mapping for all 1 ≤ m ≤ N. Assume
that Φ := ∩Nm=1V I(C,Am) ∩ Sol(B) 6= ∅ and {xn} is a vector sequence defined
by 

x1 ∈ H,
C1 = H,

〈λ− yn, yn − xn〉+ ηnB(yn, λ) ≥ 0, ∀λ ∈ Cn,
zn = αn

∑N
m=1 ϕn,mPC(I − µn,mAm)yn + (1− αn)xn,

Cn+1 = {w ∈ Cn : ‖xn − w‖ ≥ ‖zn − w‖},
xn+1 = PCn+1

x1, n ≥ 0,

where the control sequences {αn}, {ηn}, {µn,m} and {ϕn,m} satisfy the following
restrictions: αn ∈ [a, 1) with a ∈ R being some constant, {ηn} is real position
sequence such that lim infn→∞ ηn > 0, 0 < d ≤ µn,m ≤ e < 2νm. Then the
sequence {xn} generated above converges to PΦx1 in norm.

If B(x, y) ≡ 0, the following result is not hard to derive.

Corollary 3.3. Let C be a closed and convex nonempty subset of a real Hilbert
space and let N be some positive integer. Let Bm : C → H be a maximal
monotone mapping and let Am : C → H be a νm-inverse-strongly monotone
mapping for all 1 ≤ m ≤ N with Φ := ∩Nm=1(Am +Bm)−1(0) 6= ∅. Let {xn} be
a vector sequence defined by

x1 ∈ C,C1 = H,

zn = αn
∑N
m=1 ϕn,mRes

Bm
µn,m

(I − µn,mAm)xn + (1− αn)xn,

Cn+1 = {w ∈ Cn : ‖xn − w‖ ≥ ‖zn − w‖},
xn+1 = PCn+1

x1, n ≥ 0,

where the control sequences {αn}, {µn,m} and {ϕn,m} satisfy the following re-
strictions: αn ∈ [a, 1) with a ∈ R being some constant, 0 < d ≤ µn,m ≤ e <
2νm. Then the sequence {xn} generated above converges to PΦx1 in norm.
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